Publications

Results 76–82 of 82

Search results

Jump to search filters

A new linear inductive voltage adder driver for the Saturn Accelerator

Mazarakis, Michael G.; Spielman, Rick B.; Struve, Kenneth W.; Long, Finis W.

Saturn is a dual-purpose accelerator. It can be operated as a large-area flash x-ray source for simulation testing or as a Z-pinch driver especially for K-line x-ray production. In the first mode, the accelerator is fitted with three concentric-ring 2-MV electron diodes, while in the Z-pinch mode the current of all the modules is combined via a post-hole convolute arrangement and driven through a cylindrical array of very fine wires. We present here a point design for a new Saturn class driver based on a number of linear inductive voltage adders connected in parallel. A technology recently implemented at the Institute of High Current Electronics in Tomsk (Russia) is being utilized. In the present design we eliminate Marx generators and pulse-forming networks. Each inductive voltage adder cavity is directly fed by a number of fast 100-kV small-size capacitors arranged in a circular array around each accelerating gap. The number of capacitors connected in parallel to each cavity defines the total maximum current. By selecting low inductance switches, voltage pulses as short as 30-50-ns FWHM can be directly achieved. The voltage of each stage is low (100-200 kv). Many stages are required to achieve multi-megavolt accelerator output. However, since the length of each stage is very short (4-10 cm), accelerating gradients of higher than 1 MV/m can easily be obtained. The proposed new driver will be capable of delivering pulses of 15-MA, 36-TW, 1.2-MJ to the diode load, with a peak voltage of {minus}2.2 MV and FWHM of 40-ns. And although its performance will exceed the presently utilized driver, its size and cost could be much smaller ({approximately}1/3). In addition, no liquid dielectrics like oil or deionized water will be required. Even elimination of ferromagnetic material (by using air-core cavities) is a possibility.

More Details

A Compact, High-Voltage E-Beam Pulser

Mazarakis, Michael G.

It is well established that pulsed power technology is relatively cheaper than other architectures aiming to produce high-current, high-voltage electron or ion accelerators. The footprints of most pulsed power accelerators are large making them incompatible for applications that require either portability or a large number of similar components for very high power devices (like Z-pinch accelerators). Most of the modern pulsed power accelerators require several stages of pulse conditioning (pulse forming) to convert the multimicrosecond pulse of a Marx generator output to the 50-1 00-ns pulse required for an electron or ion diode or a cell cavity of an inductive voltage adder We propose a new and unique method for constmcting high-current, high-voltage pulsed accelerators. The salient future of the approach is switching and inductively adding the pulses at low voltage straight out of the capacitors through low inductance transfer and soft iron core isolation. High currents can be achieved by feeding each core with many capacitors connected in parallel in a circular array. High voltage is obtained by inductively adding many stages in series. Utilizing the presently available capacitors and switches we can build a 300-kA, 7-MV generator with an overall outer diameter (including capacitors and switches) of 1.2 m and length of 6.5 m! In addition our accelerator can be multipulsed with a repetition rate up to the capacitor specifications and no less than 10 Hz. As an example the design of a 3-MeV, 100-kA accelerator is presented and analyzed.

More Details

Pencil-like mm-size electron beams produced with linear inductive voltage adders (LIVA)

Mazarakis, Michael G.

This paper presents design, analysis, and first results of the high brightness electron beam experiments currently under investigation at Sandia. Anticipated beam parameters are: energy 12 MeV, current 35-40 kA, rms radius 0.5 mm, pulse duration 40 ns FWHM. The accelerator is SABRE, a pulsed LIVA modified to higher impedance, and the electron source is a magnetically immersed foilless electron diode. 20 to 30 Tesla solenoidal magnets are required to insulate the diode and contain the beam to its extremely small sized (1 mm) envelope. These experiments are designed to push the technology to produce the highest possible electron current in a submillimeter radius beam. Design, numercial simulations, and first experimental results are presented.

More Details

High voltage high brightness electron accelerator with MITL voltage adder coupled to foilless diode

Mazarakis, Michael G.

The design and analysis of a high brightness electron beam experiment under construction at Sandia National Laboratory is presented. The beam energy is 12 MeV, the current 35-40 kA, the rms radius 0.5 mm, and the pulse duration FWHM 40 ns. The accelerator is SABRE a pulsed inductive voltage adder, and the electron source is a magnetically immersed foilless diode. This experiment has as its goal to stretch the technology to the edge and produce the highest possible electron current in a submillimeter radius beam.

More Details

4-MV injector beam generation and IFT transport

Mazarakis, Michael G.

We report the first experiments evaluating the beam generation by the new 4-MV RLA injector. Beams of 15 to 27 kA current were produced and successfully transported up to the first post-accelerating cavity (ET-2), 1.3 m downstream. The beam radius was measured with an x-ray pin-hole camera and found to be equal to 5 mm. We selected an apertured ion-focused foilless diode among the various available diode options. It is the simplest and easiest to operate and can be adjusted to provide variable beam impedance loads. Experimental results will be presented and compared with numerical simulations.

More Details

Self-Magnetically Insulated Transmission Line ( SMILE'') a new version for the RADLAC II linear accelerator

Mazarakis, Michael G.

We present here the SMILE modification of the RADLAC II accelerator which enabled us to produce high quality 12--14 MV, 100 kA beams. It consists of replacing the 40-kA 4-MV beam injector, magnetic vacuum transport and accelerating gaps by a long cathode shank which adds up the voltages of the 8 pulse forming lines. The beam now is produced at the end of the accelerator and is free of all the possible instabilities associated with accelerating gaps and magnetic vacuum transport. Annular beams with {beta}{perpendicular} {le} 0.1 and radius r{sub b} {le} 2 cm are routinely obtained and extracted from a small magnetically immersed foilless electron diode. Results of the experimental evaluation are presented and compared with design parameters and numerical simulation predictions. 6 refs., 7 figs., 1 tab.

More Details
Results 76–82 of 82
Results 76–82 of 82