Publications

Results 126–129 of 129

Search results

Jump to search filters

Modeling ignition chemistry

Hobbs, Michael L.

An eXplosive CHEMical kinetics code, XCHEM was developed to solve the reactive diffusion equations associated with thermal ignition of energetic material. This method-of-lines code uses stiff numerical methods and adaptive meshing. Solution accuracy is maintained between multilayered materials consisting of blends of reactive components and/or inert materials. Phase change and variable properties are included in one-dimensional slab, cylindrical and spherical geometries. Temperature-dependent thermal properties was incorporated and modification of thermal conductivities to include decomposition effects are estimated using solid/gas volume fractions determined by species fractions. Gas transport properties are also included. Time varying temperature, heat flux, convective and thermal radiation boundary conditions, and layer to layer contact resistances are also implemented. The global kinetic mechanism developed at Lawrence Livermore National Laboratory (LLNL) by McGuire and Tarver used to fit One-Dimensional Time to eXplosion (ODTX) data for the conventional energetic materials (HMX, RDX, TNT, and TATB) are presented as sample calculations representative of multistep chemistry. Calculated and measured ignition times for explosive mixtures of Comp B (RDX/TNT), Octol, (HMX/TNT), PBX 9404 (HMX/NC), and RX-26-AF (HMX/TATB) are compared. Geometry and size effects are accurately modeled, and calculations are compared to experiments with time varying boundary conditions. Finally, XCHEM calculations of initiation of an AN/oil/water emulsion, resistively heated, are compared to measurements.

More Details

Calibration of the BKW--EOS and application to aluminized composite explosives

Hobbs, Michael L.

The Becker-Kistiakowsky-Wilson equation of state (BKW-EOS) has been calibrated over a wide initial density range near C-J states using measured detonation properties from 62 explosives at III total initial densities. Values for the empirical BKW constants {alpha}, {beta}, {kappa}, and {theta} were 0.5, 0.298, 10.5, and 6620, respectively. Covolumes were assumed to be invariant. Model evaluation includes comparison to measurements from 91 explosives composed of combinations of Al, B, Ba, C, Ca, Cl, F, H, N, 0, P, Pb, and Si at 147 total initial densities. Adequate agreement between predictions and measurements were obtained with a few exceptions for nonideal explosives. However, detonation properties for the nonideal explosives can be predicted adequately by assuming partial equilibrium. The partial equilibrium assumption was applied to aluminized composites of RDX, HMX, TNETB, and TNT to predict detonation velocity and temperature.

More Details

Nonideal thermoequilibrium calculations using a large product species data base

Shock Waves

Hobbs, Michael L.

Thermochemical data fits for approximately 900 gaseous and 600 condensed species found in the JANAF tables (Chase et al. 1985) have been completed for use with the TIGER non-ideal thermoequilibrium code (Cowperthwaite and Zwisler 1973). The TIGER code has been modified to allow systems containing up to 400 gaseous and 100 condensed constituents composed of up to 50 elements. Gaseous covolumes have been estimated following the procedure outlined by Mader (1979) using estimates of van der Waals radii for 48 elements and three-dimensional molecular mechanics. Molecular structures for all gaseous components were explicitly defined in terms of atomic coordinates in Å (Hobbs and Baer 1992a). The Becker-Kistiakowsky-Wilson equation of state (BKW-EOS) has been calibrated near C-J states using detonation temperatures measured in liquid and solid explosives and a large product species data base. Detonation temperatures for liquid and solid explosives were predicted adequately with a single set of BKW parameters. Values for the empirical BKW constants α, β, κ, and θ were 0.5, 0.174, 11.85, and 5160, respectively. Values for the covolume factors, κi, were assumed to be invariant. The liquid explosives included mixtures of hydrazine nitrate with hydrazine, hydrazine hydrate, and water; mixtures of tetranitromethane with nitromethane; liquid isomers ethylnitrate and 2-nitroethanol; and nitroglycerine. The solid explosives included HMX, RDX, PETN, Tetryl, and TNT. Color contour plots of HMX equilibrium products as well as thermodynamic variables are shown in pressure and temperature space. Similar plots for a pyrotechnic reaction composed of TiH2 and KClO4 are also reported. Calculations for a typical HMX-based propellant are also discussed. © 1992 Springer-Verlag.

More Details

Dependence of fixed-bed reaction processes on bed void distribution

Hobbs, Michael L.

Variations of bed void fraction in a full-scale, reacting, fixed-bed coal gasifier have been deduced from measured axial pressure profiles obtained during gasification of seven coal types ranging from lignite to bituminous. Packed-bed pressure correlations were used to calculate the void fractions based on monotonic polynomial fits of measured pressure profiles. Insights into the fixed-bed combustion processes affected by the void distribution were obtained by a one-dimensional, steady-state, fixed-bed combustion model. Predicted temperature profiles from this model compare reasonably well to experimental data. The bed void distributions are not linear but are perturbed by vigorous reactions in the devolatilization and oxidation zones. Results indicate that a dramatic increase in temperature and associated gas release causes the bed to expand and the gas void space to increase. Increased void space localized in the combustion zone causes the steep temperature gradient to decrease and the location of the maximum temperature to shift. Also, large feed gas flow rates cause the void fraction in the ash zone to increase.

More Details
Results 126–129 of 129
Results 126–129 of 129