Chemical-Mechanical Modeling of Subcritical-to-Critical Fracture in Geomaterials
Abstract not provided.
Abstract not provided.
Abstract not provided.
npj Materials Degradation
Computer simulations at the atomistic scale play an increasing important role in understanding the structure features, and the structure–property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD) simulations, to classical molecular dynamics (MD), and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to study the reactions and interactions of inorganic glasses with water and the dissolution behaviors of inorganic glasses. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water–glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution are reviewed. The advantages and disadvantageous of these simulation methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution presented.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Langmuir
Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m2 is calculated with the ClayFF force field, and 2.0 J/m2 is calculated for the ReaxFF force field. The ClayFF surface energies are consistent with the experimental results from double cantilever beam fracture tests (4.5 J/m2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m2 for ClayFF and 0.8 J/m2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m2 with the ClayFF force field and to 0.2 J/m2 with the ReaxFF force field. Experimental equilibrium surface energies are ∼0.35 J/m2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Therefore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.
Abstract not provided.