Publications

Results 151–175 of 183

Search results

Jump to search filters

Structure and electronic properties of rare earth DOBDC metal-organic-frameworks

Physical Chemistry Chemical Physics

Vogel, Dayton J.; Gallis, Dorina F.S.; Nenoff, Tina M.; Rimsza, Jessica

Here, we apply density functional theory (DFT) to investigate rare-earth metal organic frameworks (RE-MOFs), RE12(μ3-OH)16(C8O6H4)8(C8O6H5)4 (RE = Y, Eu, Tb, Yb), and characterize the level of theory needed to accurately predict structural and electronic properties in MOF materials with 4f-electrons. A two-step calculation approach of geometry optimization with spin-restricted DFT and large core potential (LCPs), and detailed electronic structures with spin-unrestricted DFT with a full valence potential + Hubbard U correction is investigated. Spin-restricted DFT with LCPs resulted in good agreement between experimental lattice parameters and optimized geometries, while a full valence potential is necessary for accurate representation of the electronic structure. The electronic structure of Eu-DOBDC MOF indicated a strong dependence on the treatment of highly localized 4f-electrons and spin polarization, as well as variation within a range of Hubbard corrections (U = 1-9 eV). For Hubbard corrected spin-unrestricted calculations, a U value of 1-4 eV maintains the non-metallic character of the band gap with slight deviations in f-orbital energetics. When compared with experimentally reported results, the importance of the full valence calculation and the Hubbard correction in correctly predicting the electronic structure is highlighted.

More Details

Atomic-scale interaction of a crack and an infiltrating fluid

Chemical Physics Letters: X

Tucker, W.C.; Rimsza, Jessica; Criscenti, Louise; Jones, Reese E.

In this work we investigate the Orowan hypothesis, that decreases in surface energy due to surface adsorbates lead directly to lowered fracture toughness, at an atomic/molecular level. We employ a Lennard-Jones system with a slit crack and an infiltrating fluid, nominally with gold-water properties, and explore steric effects by varying the soft radius of fluid particles and the influence of surface energy/hydrophobicity via the solid–fluid binding energy. Using previously developed methods, we employ the J-integral to quantify the sensitivity of fracture toughness to the influence of the fluid on the crack tip, and exploit dimensionless scaling to discover universal trends in behavior.

More Details

Chemical Effects on Subcritical Fracture in Silica From Molecular Dynamics Simulations

Journal of Geophysical Research: Solid Earth

Rimsza, Jessica; Jones, Reese E.; Criscenti, Louise

Fracture toughness of silicates is reduced in aqueous environments due to water-silica interactions at the crack tip. To investigate this effect, classical molecular dynamics simulations using the bond-order-based reactive force field (ReaxFF) were used to simulate silica fracture. The chemical and mechanical aspects were separated by simulating fracture in (a) a vacuum with dynamic loading, (b) an aqueous environment with dynamic loading, and (c) an aqueous environment with static subcritical mechanical loading to track silica dissolution. The addition of water to silica fracture reduced the silica fracture toughness by ~25%, a trend consistent with experimentally reported results. Analysis of Si─O bonds in the process zone and calculations of dissipation energy associated with fracture indicated that water relaxes the entire process zone and not just the surface. Additionally, the crack tip sharpens during fracture in water and an increased number of microscopic propagation events occur. This results in earlier fracture in systems with increasing mechanical loading in aqueous conditions, despite the lack of significant silica dissolution. Therefore, the threshold for Si─O bond breakage has been lowered in the presence of water and the reduction in fracture toughness is due to structural and energetic changes in the silica, rather than specific dissolution events.

More Details

Chemical-Mechanical Modeling of Subcritical-to-Critical Fracture in Geomaterials

Criscenti, Louise; Rimsza, Jessica; Jones, Reese E.; Matteo, Edward N.; Payne, Clay

Predicting chemical-mechanical fracture initiation and propagation in materials is a critical problem, with broad relevance to a host of geoscience applications including subsurface storage and waste disposal, geothermal energy development, and oil and gas extraction. In this project, we have developed molecular simulation and coarse- graining techniques to obtain an atomistic-level understanding of the chemical- mechanical mechanisms that control subcritical crack propagation in materials under tension and impact the fracture toughness. We have applied these techniques to the fracture of fused quartz in vacuum, in distilled water, and in two salt solutions - 1M NaC1, 1M NaOH - that form relatively acidic and basic solutions respectively. We have also established the capability to conduct double-compression double-cleavage experiments in an environmental chamber to observe material fracture in aqueous solution. Both simulations and experiments indicate that fractures propagate fastest in NaC1 solutions, slower in distilled water, and even slower in air.

More Details

Evaluation of Spent Nuclear Fuel Disposition in Salt (FY18)

Kuhlman, Kristopher L.; Lopez, Carlos M.; Mills, Melissa M.; Rimsza, Jessica; Sassani, David C.

This report summarizes the 2018 fiscal year (FY18) field, laboratory, and modeling work funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign as part of the Sandia National Laboratories Salt Research and Development (R&D) and Salt International work packages. This report satisfies level-two milestone M2SF-18SNO10303031and comprises three related but stand-alone sections. The first section summarizes the programmatic progress made to date in the DOE-NE salt program and its goals going forward. The second section presents brine composition modeling and laboratory activities related to salt evaporation experiments, which will be used to interpret data collected during the heater test. The third section presents theoretical and numerical modeling work done to investigate the effects brine composition have on dihedral angle and the permeability of salt.

More Details

Synthesis, Characterization, and Nanomaterials Generated from 6,6′-(((2-Hydroxyethyl)azanediyl)bis(methylene))bis(2,4-di- tert-butylphenol) Modified Group 4 Metal Alkoxides

Inorganic Chemistry

Boyle, Timothy; Farrell, Joshua; Yonemoto, Daniel T.; Sears, Jeremiah M.; Rimsza, Jessica; Perales, Diana; Bell, Nelson S.; Cramer, Roger E.; Treadwell, Larico J.; Renehan, Peter; Adams, Casey J.; Bender, Michael T.; Crowley, William

The impact on the morphology nanoceramic materials generated from group 4 metal alkoxides ([M(OR)4]) and the same precursors modified by 6,6′-(((2-hydroxyethyl)azanediyl)bis(methylene))bis(2,4-di-tert-butylphenol) (referred to as H3-AM-DBP2 (1)) was explored. The products isolated from the 1:1 stoichiometric reaction of a series of [M(OR)4] where M = Ti, Zr, or Hf; OR = OCH(CH3)2(OPri); OC(CH3)3(OBut); OCH2C(CH3)3(ONep) with H3-AM-DBP2 proved, by single crystal X-ray diffraction, to be [(ONep)Ti(k4(O,O′,O′′,N)-AM-DBP2)] (2), [(OR)M(μ(O)-k3(O′,O′′,N)-AM-DBP2)]2 [M = Zr: OR = OPri, 3·tol; OBut, 4·tol; ONep, 5·tol; M = Hf: OR = OBut, 6·tol; ONep, 7·tol]. The product from each system led to a tetradentate AM-DBP2 ligand and retention of a parent alkoxide ligand. For the monomeric Ti derivative (2), the metal was solved in a trigonal bipyramidal geometry, whereas for the Zr (3-5) and Hf (6, 7) derivatives a symmetric dinuclear complex was formed where the ethoxide moiety of the AM-DBP2 ligand bridges to the other metal center, generating an octahedral geometry. High quality density functional theory level gas-phase electronic structure calculations on compounds 2-7 using Gaussian 09 were used for meaningful time dependent density functional theory calculations in the interpretation of the UV-vis absorbance spectral data on 2-7. Nanoparticles generated from the solvothermal treatment of the ONep/AM-DBP2 modified compounds (2, 5, 7) in comparison to their parent [M(ONep)4] were larger and had improved regularity and dispersion of the final ceramic nanomaterials.

More Details

An atomic-scale evaluation of the fracture toughness of silica glass

Journal of Physics Condensed Matter

Jones, Reese E.; Rimsza, Jessica; Criscenti, Louise

Using an atomistic technique consistent with continuum balance laws and drawing on classical fracture mechanics theory, we estimate the resistance to fracture propagation of amorphous silica. We discuss correspondence and deviations from classical linear elastic fracture mechanics theory including size dependence, rigid/floppy modes of deformation, and the effects of surface energy and stress.

More Details

Interaction of NaOH solutions with silica surfaces

Journal of Colloid and Interface Science

Rimsza, Jessica; Jones, Reese E.; Criscenti, Louise

Hypothesis: Sodium adsorption on silica surfaces depends on the solution counter-ion. Here, we use NaOH solutions to investigate basic environments. Simulations: Sodium adsorption on hydroxylated silica surfaces from NaOH solutions were investigated through molecular dynamics with a dissociative force field, allowing for the development of secondary molecular species. Findings: Across the NaOH concentrations (0.01 M − 1.0 M), ∼50% of the Na+ ions were concentrated in the surface region, developing silica surface charges between − 0.01 C/m2 (0.01 M NaOH) and − 0.76 C/m2 (1.0 M NaOH) due to surface site deprotonation. Five inner-sphere adsorption complexes were identified, including monodentate, bidentate, and tridentate configurations and two additional structures, with Na+ ions coordinated by bridging oxygen and hydroxyl groups or water molecules. Coordination of Na+ ions by bridging oxygen atoms indicates partial or complete incorporation of Na+ ions into the silica surface. Residence time analysis identified that Na+ ions coordinated by bridging oxygen atoms stayed adsorbed onto the surface four times longer than the mono/bi/tridentate species, indicating formation of relatively stable and persistent Na+ ion adsorption structures. Such inner-sphere complexes form only at NaOH concentrations of > 0.5 M. Na+ adsorption and lifetimes have implications for the stability of silica surfaces.

More Details

Crack propagation in silica from reactive classical molecular dynamics simulations

Journal of the American Ceramic Society

Rimsza, Jessica; Jones, Reese E.; Criscenti, Louise

Mechanistic insight into the process of crack growth can be obtained through molecular dynamics (MD) simulations. In this investigation of fracture propagation, a slit crack was introduced into an atomistic amorphous silica model and mode I stress was applied through far-field loading until the crack propagates. Atomic displacements and forces and an Irving–Kirkwood method with a Lagrangian kernel estimator were used to calculate the J-integral of classical fracture mechanics around the crack tip. The resulting fracture toughness (KIC), 0.76 ± 0.16 MPa√m, agrees with experimental values. In addition, the stress fields and dissipation energies around the slit crack indicate the development of an inelastic region ~30Å in diameter. This is one of the first reports of KIC values obtained from up-scaled atomic-level energies and stresses through the J-integral. The application of the ReaxFF classical MD force field in this study provides the basis for future research into crack growth in multicomponent oxides in a variety of environmental conditions.

More Details

Atomistic computer simulations of water interactions and dissolution of inorganic glasses

npj Materials Degradation

Du, Jincheng; Rimsza, Jessica

Computer simulations at the atomistic scale play an increasing important role in understanding the structure features, and the structure–property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD) simulations, to classical molecular dynamics (MD), and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to study the reactions and interactions of inorganic glasses with water and the dissolution behaviors of inorganic glasses. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water–glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution are reviewed. The advantages and disadvantageous of these simulation methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution presented.

More Details
Results 151–175 of 183
Results 151–175 of 183