Publications

Results 126–150 of 183

Search results

Jump to search filters

NOx Adsorption and Optical Detection in Rare Earth Metal–Organic Frameworks

ACS Applied Materials and Interfaces

Nenoff, Tina M.; Vogel, Dayton J.; Rimsza, Jessica; Gallis, Dorina F.S.; Garibay, Grace A.

Acid gases (e.g., NOx and SOx), commonly found in complex chemical and petrochemical streams, require material development for their selective adsorption and removal. Here, we report the NOx adsorption properties in a family of rare earth (RE) metal–organic frameworks (MOFs) materials. Fundamental understanding of the structure–property relationship of NOx adsorption in the RE-DOBDC materials platform was sought via a combined experimental and molecular modeling study. No structural change was noted following humid NOx exposure. Density functional theory (DFT) simulations indicated that H2O has a stronger affinity to bind with the metal center than NO2, while NO2 preferentially binds with the DOBDC ligands. Further modeling results indicate no change in binding energy across the RE elements investigated. Also, stabilization of the NO2 and H2O molecules following adsorption was noted, predicted to be due to hydrogen bonding between the framework ligands and the molecules and nanoconfinement within the MOF structure. This interaction also caused distinct changes in emission spectra, identified experimentally. As a result, calculations indicated that this is due to the adsorption of NO2 molecules onto the DOBDC ligand altering the electronic transitions and the resulting photoluminescent properties, a feature that has potential applications in future sensing technologies.

More Details

Mechanisms of silica fracture in aqueous electrolyte solutions

Frontiers in Materials

Rimsza, Jessica; Jones, Reese E.; Criscenti, Louise

Glassy silicates are substantially weaker when in contact with aqueous electrolyte solutions than in vacuum due to chemical interactions with preexisting cracks. To investigate this silicate weakening phenomenon, classical molecular dynamics (MD) simulations of silica fracture were performed using the bond-order based, reactive force field ReaxFF. Four different environmental conditions were investigated: vacuum, water, and two salt solutions (1M NaCl, 1M NaOH) that form relatively acidic and basic solutions, respectively. Any aqueous environment weakens the silica, with NaOH additions resulting in the largest decreases in the effective fracture toughness (eKIC) of silica or the loading rate at which the fracture begins to propagate. The basic solution leads to higher surface deprotonation, narrower radius of curvature of the crack tip, and greater weakening of the silica, compared with the more acidic environment. The results from the two different electrolyte solutions correspond to phenomena observed in experiments and provide a unique atomistic insight into how anions alter the chemical-mechanical fracture response of silica.

More Details

Hydration and Hydroxylation of MgO in Solution: NMR Identification of Proton-Containing Intermediate Phases

ACS Omega

Rimsza, Jessica; Sorte, Eric; Alam, Todd M.

Magnesium oxide (MgO)-engineered barriers used in subsurface applications will be exposed to high concentration brine environments and may form stable intermediate phases that can alter the effectiveness of the barrier. To explore the formation of these secondary intermediate phases, MgO was aged in water and three different brine solutions and characterized with X-ray diffraction (XRD) and 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. After aging, there is ∼4% molar equivalent of a hydrogen-containing species formed. The 1H MAS NMR spectra resolved multiple minor phases not visible in XRD, indicating that diverse disordered proton-containing environments are present in addition to crystalline Mg(OH)2 brucite. Density functional theory (DFT) simulations for the proposed Mg-O-H-, Mg-Cl-O-H-, and Na-O-H-containing phases were performed to index resonances observed in the experimental 1H MAS NMR spectra. Although the intermediate crystal structures exhibited overlapping 1H NMR resonances in the spectra, Mg-O-H intermediates were attributed to the growth of resonances in the δ +1.0 to 0.0 ppm region, and Mg-Cl-O-H structures produced the increasing contributions of the δ = +2.5 to 5.0 ppm resonances in the chloride-containing brines. Overall, 1H NMR analysis of aged MgO indicates the formation of a wide range of possible intermediate structures that cannot be observed or resolved in the XRD analysis.

More Details
Results 126–150 of 183
Results 126–150 of 183