Metaprogramming-Enabled Parallel Execution of Apparently Sequential C++ Code
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In this document, we provide the specifications for DARMA (Distributed Asynchronous Resilient Models and Applications), a co-design research vehicle for asynchronous many-task (AMT) programming models that serves to: 1) insulate applications from runtime system and hardware idiosyncrasies, 2) improve AMT runtime programmability by co-designing an application programmer interface (API) directly with application developers, 3) synthesize application co-design activities into meaningful requirements for runtime systems, and 4) facilitate AMT design space characterization and definition, accelerating the development of AMT best practices.
Computational Statistics
Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Formulas such as these, are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of ISAV 2015: 1st International Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, Held in conjunction with SC 2015: The International Conference for High Performance Computing, Networking, Storage and Analysis
Next generation architectures necessitate a shift away from traditional workflows in which the simulation state is saved at prescribed frequencies for post-processing analysis. While the need to shift to in situ workflows has been acknowledged for some time, much of the current research is focused on static workflows, where the analysis that would have been done as a post-process is performed concurrently with the simulation at user-prescribed frequencies. Recently, research efforts are striving to enable adaptive workflows, in which the frequency, composition, and execution of computational and data manipulation steps dynamically depend on the state of the simulation. Adapting the workflow to the state of simulation in such a data-driven fashion puts extremely strict efficiency requirements on the analysis capabilities that are used to identify the transitions in the workflow. In this paper we build upon earlier work on trigger detection using sublinear techniques to drive adaptive workflows. Here we propose a methodology to detect the time when sudden heat release occurs in simulations of turbulent combustion. Our proposed method provides an alternative metric that can be used along with our former metric to increase the robustness of trigger detection. We show the effectiveness of our metric empirically for predicting heat release for two use cases.
Abstract not provided.
Abstract not provided.
In this report, we propose a framework for the design and implementation of in-situ analy- ses using an asynchronous many-task (AMT) model, using the Legion programming model together with the MiniAero mini-application as a surrogate for full-scale parallel scientific computing applications. The bulk of this work consists of converting the Learn/Derive/Assess model which we had initially developed for parallel statistical analysis using MPI [PTBM11], from a SPMD to an AMT model. In this goal, we propose an original use of the concept of Legion logical regions as a replacement for the parallel communication schemes used for the only operation of the statistics engines that require explicit communication. We then evaluate this proposed scheme in a shared memory environment, using the Legion port of MiniAero as a proxy for a full-scale scientific application, as a means to provide input data sets of variable size for the in-situ statistical analyses in an AMT context. We demonstrate in particular that the approach has merit, and warrants further investigation, in collaboration with ongoing efforts to improve the overall parallel performance of the Legion system.
Major exascale computing reports indicate a number of software challenges to meet the dramatic change of system architectures in near future. While several-orders-of-magnitude increase in parallelism is the most commonly cited of those, hurdles also include performance heterogeneity of compute nodes across the system, increased imbalance between computational capacity and I/O capabilities, frequent system interrupts, and complex hardware architectures. Asynchronous task-parallel programming models show a great promise in addressing these issues, but are not yet fully understood nor developed su ciently for computational science and engineering application codes. We address these knowledge gaps through quantitative and qualitative exploration of leading candidate solutions in the context of engineering applications at Sandia. In this poster, we evaluate MiniAero code ported to three leading candidate programming models (Charm++, Legion and UINTAH) to examine the feasibility of these models that permits insertion of new programming model elements into an existing code base.
Abstract not provided.
In an earlier work, we reported on the extension to the statistical analysis capability of the Visualization Tool Kit (VTK), which we developed for the calculation of divergence statistics, with the particular aim of providing quantitative means for High Performance Computing (HPC) performance analysis, of which we provided an example as well as user's manual. However, we did not provide the mathematical foundations for this work. In the current report, we fill this void with the complete derivation of the formulas which we used in the divergence statistics engine. This provides the foundations for future work which will aim at generalizing these formulas for more detailed HPC performance analysis.
This report provides in-depth information and analysis to help create a technical road map for developing next-generation programming models and runtime systems that support Advanced Simulation and Computing (ASC) work- load requirements. The focus herein is on asynchronous many-task (AMT) model and runtime systems, which are of great interest in the context of "Oriascale7 computing, as they hold the promise to address key issues associated with future extreme-scale computer architectures. This report includes a thorough qualitative and quantitative examination of three best-of-class AIM] runtime systems – Charm-++, Legion, and Uintah, all of which are in use as part of the Centers. The studies focus on each of the runtimes' programmability, performance, and mutability. Through the experiments and analysis presented, several overarching Predictive Science Academic Alliance Program II (PSAAP-II) Asc findings emerge. From a performance perspective, AIV runtimes show tremendous potential for addressing extreme- scale challenges. Empirical studies show an AM runtime can mitigate performance heterogeneity inherent to the machine itself and that Message Passing Interface (MP1) and AM11runtimes perform comparably under balanced conditions. From a programmability and mutability perspective however, none of the runtimes in this study are currently ready for use in developing production-ready Sandia ASC applications. The report concludes by recommending a co- design path forward, wherein application, programming model, and runtime system developers work together to define requirements and solutions. Such a requirements-driven co-design approach benefits the community as a whole, with widespread community engagement mitigating risk for both application developers developers. and high-performance computing runtime systein
Abstract not provided.
Post-Moore's law scaling is creating a disruptive shift in simulation workflows, as saving the entirety of raw data to persistent storage becomes expensive. We are moving away from a post-process centric data analysis paradigm towards a concurrent analysis framework, in which raw simulation data is processed as it is computed. Algorithms must adapt to machines with extreme concurrency, low communication bandwidth, and high memory latency, while operating within the time constraints prescribed by the simulation. Furthermore, in- put parameters are often data dependent and cannot always be prescribed. The study of sublinear algorithms is a recent development in theoretical computer science and discrete mathematics that has significant potential to provide solutions for these challenges. The approaches of sublinear algorithms address the fundamental mathematical problem of understanding global features of a data set using limited resources. These theoretical ideas align with practical challenges of in-situ and in-transit computation where vast amounts of data must be processed under severe communication and memory constraints. This report details key advancements made in applying sublinear algorithms in-situ to identify features of interest and to enable adaptive workflows over the course of a three year LDRD. Prior to this LDRD, there was no precedent in applying sublinear techniques to large-scale, physics based simulations. This project has definitively demonstrated their efficacy at mitigating high performance computing challenges and highlighted the rich potential for follow-on re- search opportunities in this space.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.