Publications

22 Results

Search results

Jump to search filters

Release of Contaminants from Burning Liquids and Solids

Brown, Alexander B.; Pierce, Flint P.; Zepper, Ethan T.

This report details model development, theory, and a literature review focusing on the emission of contaminants on solid substrates in fires. This is the final report from a 2-year Nuclear Safety Research and Development (NSRD) project. The work represents progress towards a goal of having modeling and simulation capabilities that are sufficiently mature and accurate that they can be utilized in place of physical tests for determining safe handling practices. At present, the guidelines for safety are largely empirically based, derived from a survey of existing datasets. This particular report details the development, verification and calibration of a number of code improvements that have been implemented in the SIERRA suite of codes, and the application of those codes to three different experimental scenarios that have been subject of prior tests. The first scenario involves a contaminated PMMA slab, which is exposed to heat. The modeling involved a novel method for simulating the viscous diffusion of the particles in the slab. The second scenario involved a small pool fire of contaminated combustible liquid mimicking historical tests and finds that the release of contaminants has a high functionality with the height of the liquid in the container. The third scenario involves the burning of a contaminated tray of shredded cellulose. A novel release mechanism was formulated based on predicted progress of the decomposition of the cellulose, and while the model was found to result in release that can be tuned to match the experiments, some modifications to the model are desirable to achieve quantitative accuracy.

More Details

Airborne Release Fractions from Surrogate Nuclear Waste Fires Containing Lanthanide Nitrates and Depleted Uranium Nitrate in 30% Tributyl Phosphate in Kerosene

Nuclear Technology

Hubbard, Joshua A.; Boyle, Timothy J.; Zepper, Ethan T.; Brown, Alexander B.; Settecerri, Taylor S.; Kotula, Paul G.; McKenzie, Bonnie B.; Lemieux, Laura J.; Zigmond, Joseph Z.; Preston, Rose T.; Maes, Brenda M.; Wiemann, Dora K.; Guerrero, Fernando G.; Robinson, Xavier J.

Airborne contaminants from fires containing nuclear waste represent significant health hazards and shape the design and operation of nuclear facilities. Much of the data used to formulate DOE-HDBK-3010-94, “Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities,” from the U.S. Department of Energy, were taken over 40 years ago. The objectives of this study were to reproduce experiments from Pacific Northwest Laboratories conducted in June 1973 employing current aerosol measurement methods and instrumentation, develop an enhanced understanding of particulate formation and transport from fires containing nuclear waste, and provide modeling and experimental capabilities for updating current standards and practices in nuclear facilities. A special chamber was designed to conduct small fires containing 25 mL of flammable waste containing lutetium nitrate, ytterbium nitrate, or depleted uranium nitrate. Carbon soot aerosols showed aggregates of primary particles ranging from 20 to 60 nm in diameter. In scanning electron microscopy, ~200-nm spheroidal particles were also observed dispersed among the fractal aggregates. The 200-nm spherical particles were composed of metal phosphates. Airborne release fractions (ARFs) were characterized by leaching filter deposits and quantifying metal concentrations with mass spectrometry. The average mass-based ARF for 238U experiments was 1.0 × 10−3 with a standard deviation of 7.5 × 10−4. For the original experiments, DOE-HDBK-3010-94 states, “Uranium ARFs range from 2 × 10−4 to 3 × 10−3, an uncertainty of approximately an order of magnitude.” Thus, current measurements were consistent with DOE-HDBK-3010-94 values. ARF values for lutetium and ytterbium were approximately one to two orders of magnitude lower than 238U. Metal nitrate solubility may have varied with elemental composition and temperature, thereby affecting ARF values for uranium surrogates (Yb and Lu). In addition to ARF data, solution boiling temperatures and evaporation rates can also be deduced from experimental data.

More Details

Evaporation Induced Entrainment of Contaminants from Evaporating and Burning Liquids

Brown, Alexander B.; Pierce, Flint P.; Zepper, Ethan T.

This interim report details model development, theory, and a literature review focusing on the evaporation induced entrainment (sub-boiling) of contaminated liquids. Entrainment from a variety of sources is the topic of DOE Handbook 3010, and this report deals more broadly with fire related airborne sources of contaminants in hazardous operations. Relatively few studies have examined sub-boiling behavior in the past, however, it can be a phenomenon that presents a fire related risk under hazardous operations. Molecular dynamics simulations are used to infer the gaseous evolution of coordinated complexes, and a model for a water/plutonium/nitrate system is deduced from the simulation results by evaluating the statistical trends of the results. Questions remain as to the chemical reactivity and longevity of entrained species. A generalized computer model capability and simple analytical model assumptions are developed for predicting the results of these and other (boiling and solid entrainment) scenarios. Verification related predictions using these models are illustrated.

More Details

NSRD-15:Computational Capability to Substantiate DOE-HDBK-3010 Data

Laros, James H.; Bignell, John B.; Dingreville, Remi P.M.; Zepper, Ethan T.; O'Brien, Christopher J.; Busch, Robert D.; Skinner, Corey M.

Safety basis analysts throughout the U.S. Department of Energy (DOE) complex rely heavily on the information provided in the DOE Handbook, DOE-HDBK-3010, Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities, to determine radionuclide source terms from postulated accident scenarios. In calculating source terms, analysts tend to use the DOE Handbook’s bounding values on airborne release fractions (ARFs) and respirable fractions (RFs) for various categories of insults (representing potential accident release categories). This is typically due to both time constraints and the avoidance of regulatory critique. Unfortunately, these bounding ARFs/RFs represent extremely conservative values. Moreover, they were derived from very limited small-scale bench/laboratory experiments and/or from engineered judgment. Thus, the basis for the data may not be representative of the actual unique accident conditions and configurations being evaluated. The goal of this research is to develop a more accurate and defensible method to determine bounding values for the DOE Handbook using state-of-art multi-physics-based computer codes.

More Details

Thermocouple Errors when Mounted on Cylindrical Surfaces in Abnormal Thermal Environments

Nakos, James T.; Suo-Anttila, Jill M.; Zepper, Ethan T.; Koenig, Jerry J.; Valdez, Vincent A.

Mineral-insulated, metal-sheathed, Type-K thermocouples are used to measure the temperature of various items in high-temperature environments, often exceeding 1000degC (1273 K). The thermocouple wires (chromel and alumel) are protected from the harsh environments by an Inconel sheath and magnesium oxide (MgO) insulation. The sheath and insulation are required for reliable measurements. Due to the sheath and MgO insulation, the temperature registered by the thermocouple is not the temperature of the surface of interest. In some cases, the error incurred is large enough to be of concern because these data are used for model validation, and thus the uncertainties of the data need to be well documented. This report documents the error using 0.062" and 0.040" diameter Inconel sheathed, Type-K thermocouples mounted on cylindrical surfaces (inside of a shroud, outside and inside of a mock test unit). After an initial transient, the thermocouple bias errors typically range only about +-1-2% of the reading in K. After all of the uncertainty sources have been included, the total uncertainty to 95% confidence, for shroud or test unit TCs in abnormal thermal environments, is about +-2% of the reading in K, lower than the +-3% typically used for flat shrouds. Recommendations are provided in Section 6 to facilitate interpretation and use of the results. .

More Details

NSRD-11: Computational Capability to Substantiate DOE-HDBK-3010 Data

Laros, James H.; Brown, Alexander B.; Gelbard, Fred G.; Bignell, John B.; Pierce, Flint P.; Voskuilen, Tyler V.; Rodriguez, Salvador B.; Dingreville, Remi P.; Zepper, Ethan T.; Juan, Pierre-Alexandre J.; Le, San L.; Gilkey, Lindsay N.

Safety basis analysts throughout the U.S. Department of Energy (DOE) complex rely heavily on the information provided in the DOE Handbook, DOE - HDBK - 3010, Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities, to determine radionuclide source terms. In calculating source terms, analysts tend to use the DOE Handbook's bounding values on airborne release fractions (ARFs) and respirable fractions (RFs) for various categories of insults (representing potential accident release categories). This is typically due to both time constraints and the avoidance of regulatory critique. Unfortunately, these bounding ARFs/RFs represent extremely conservative values. Moreover, they were derived from very limited small-scale bench/laboratory experiments and/or from engineered judgment. Thus, the basis for the data may not be representative of the actual unique accident conditions and configurations being evaluated. The goal of this research is to develop a more accurate and defensible method to determine bounding values for the DOE Handbook using state-of-art multi-physics-based computer codes. This enables us to better understand the fundamental physics and phenomena associated with the types of accidents in the handbook. In this year, this research included improvements of the high-fidelity codes to model particle resuspension and multi-component evaporation for fire scenarios. We also began to model ceramic fragmentation experiments, and to reanalyze the liquid fire and powder release experiments that were done last year. The results show that the added physics better describes the fragmentation phenomena. Thus, this work provides a low-cost method to establish physics-justified safety bounds by taking into account specific geometries and conditions that may not have been previously measured and/or are too costly to perform.

More Details
22 Results
22 Results