The ACRR at SNL is being considered as a viable alternative for the restart of transient nuclear fuels testing in the US. A full analysis of the capabilities and limitations of the ACRR has been performed to support a comparison of alternatives. Analysis of the ACRR has shown that it is both physically and technically capable of performing nearly all of the potential experiments for future fuels testing. In addition, it is an operating reactor within the DOE complex that has proven to be a valuable asset previously with past fuels testing and in its current mission. Conclusions from the analysis also show that although the ACRR can perform the required duties, there are limitations. Active fuel motion measurement and a hot cell are the two main items lacking at SNL that a transient fuels testing program must take into account if utilizing the ACRR. Overall, the ACRR is an extremely attractive choice for the immediate and near-term restart of transient nuclear fuels testing in the US.
Sodium-cooled fast reactors (SFRs) continue to be proposed and designed throughout the United States and the world. Although the number of SFRs actually operating has declined substantially since the 1980s, a significant interest in advancing these types of reactor systems remains. Of the many issues associated with the development and deployment of SFRs, one of high regulatory importance is the source term to be used in the siting of the reactor. A substantial amount of modeling and experimental work has been performed over the past four decades on accident analysis, sodium coolant behavior, and radionuclide release for SFRs. The objective of this report is to aid in determining the gaps and issues related to the development of a realistic, mechanistically derived source term for SFRs. This report will allow the reader to become familiar with the severe accident source term concept and gain a broad understanding of the current status of the models and experimental work. Further, this report will allow insight into future work, in terms of both model development and experimental validation, which is necessary in order to develop a realistic source term for SFRs.
In recent years there has been an unstable supply of the critical diagnostic medical isotope 99Tc. Several concepts and designs have been proposed to produce 99Mo the parent nuclide of 99Tc, at a commercial scale sufficient to stabilize the world supply. This work lays out a testing and experiment plan for a proposed 2 MW open pool reactor fueled by Low Enriched Uranium (LEU) 99Mo targets. The experiments and tests necessary to support licensing of the reactor design are described and how these experiments and tests will help establish the safe operating envelop for a medical isotope production reactor is discussed. The experiments and tests will facilitate a focused and efficient licensing process in order to bring on line a needed production reactor dedicated to supplying medical isotopes. The Target Fuel Isotope Reactor (TFIR) design calls for an active core region that is approximately 40 cm in diameter and 40 cm in fuel height. It contains up to 150 cylindrical, 1-cm diameter, LEU oxide fuel pins clad with Zircaloy (zirconium alloy), in an annular hexagonal array on a {approx}2.0 cm pitch surrounded, radially, by a graphite or a Be reflector. The reactor is similar to U.S. university reactors in power, hardware, and safety/control systems. Fuel/target pin fabrication is based on existing light water reactor fuel fabrication processes. However, as part of licensing process, experiments must be conducted to confirm analytical predictions of steady-state power and accident conditions. The experiment and test plan will be conducted in phases and will utilize existing facilities at the U.S. Department of Energy's Sandia National Laboratories. The first phase is to validate the predicted reactor core neutronics at delayed critical, zero power and very low power. This will be accomplished by using the Sandia Critical Experiment (CX) platform. A full scale TFIR core will be built in the CX and delayed critical measurements will be taken. For low power experiments, fuel pins can be removed after the experiment and using Sandia's metrology lab, relative power profiles (radially and axially) can be determined. In addition to validating neutronic analyses, confirming heat transfer properties of the target/fuel pins and core will be conducted. Fuel/target pin power limits can be verified with out-of-pile (electrical heating) thermal-hydraulic experiments. This will yield data on the heat flux across the Zircaloy clad and establish safety margin and operating limits. Using Sandia's Annular Core Research Reactor (ACRR) a 4 MW TRIGA type research reactor, target/fuel pins can be driven to desired fission power levels for long durations. Post experiment inspection of the pins can be conducted in the Auxiliary Hot Cell Facility to observe changes in the mechanical properties of the LEU matrix and burn-up effects. Transient tests can also be conducted at the ACRR to observe target/fuel pin performance during accident conditions. Target/fuel pins will be placed in double experiment containment and driven by pulsing the ACRR until target/fuel failure is observed. This will allow for extrapolation of analytical work to confirm safety margins.
In this work, we describe a novel design for a H2SO 4decomposer. The decomposition of H2SO4 to produce SO2is a common processing operation in the sulfur-based thermochemical cycles for hydrogen production where acid decomposition takes place at 850°C in the presence of a catalyst. The combination of high temperature and sulfuric acid creates a very corrosive environment that presents significant design challenges. The new decomposer design is based on a bayonet-type heat exchanger tube with the annular space packed with a catalyst. The unit is constructed of silicon carbide and other highly corrosion resistant materials. The new design integrates acid boiling, superheating, decomposition and heat recuperation into a single process and eliminates problems of corrosion and failure of high temperature seals encountered in previous testing using metallic construction materials. The unit was tested by varying the acid feed rate and decomposition temperature and pressure.
The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic components under transient reactor power conditions. In analyzing the experimental results, careful attention must be paid to the kinetics associated with the reactor to ensure that the transient behavior of the electronic device is understood. Since the ACRR fuel maintains a substantial amount of beryllium, copious quantities of photoneutrons are produced that can significantly alter the expected behavior of the reactor power, especially following a reactor pulse. In order to understand these photoneutron effects on the reactor kinetics, the KIFLE transient reactor-analysis code was modified to include the photoneutron groups associated with the beryllium. The time-dependent behavior of the reactor power was analyzed for small and large pulses, assuming several initial conditions including following several pulses during the day, and following a long steady-state power run. The results indicate that, for these types of initial conditions, the photoneutron contribution to the reactor pulse energy can have a few to tens of percent effect.
American Nuclear Society Embedded Topical Meeting - 2007 International Topical Meeting on Safety and Technology of Nuclear Hydrogen Production, Control, and Management
As part of the US DOE Nuclear Hydrogen Initiative, Sandia National Laboratories is designing and constructing a process for the conversion of sulfuric acid to produce sulfur dioxide. This process is part of the thermochemical Sulfur-Iodine (S-I) cycle that produces hydrogen from water. The Sandia process will be integrated with other sections of the S-I cycle in the near future to complete a demonstration-scale S-I process. In the Sandia process, sulfuric acid is concentrated by vacuum distillation and then catalytically decomposed at high temperature (850°C) to produce sulfur dioxide, oxygen and water. Major problems in the process, corrosion, and failure of high-temperature connections of process equipment, have been eliminated through the development of an integrated acid decomposer constructed of silicon carbide. The unit integrates acid boiling, superheating and decomposition into a single unit operation and provides for exceptional heat recuperation. The design of acid decomposition process, the new acid decomposer, other process units, and materials of construction for the process are described and discussed.
A sulfuric acid catalytic decomposer section was assembled and tested for the Integrated Laboratory Scale experiments of the Sulfur-Iodine Thermochemical Cycle. This cycle is being studied as part of the U. S. Department of Energy Nuclear Hydrogen Initiative. Tests confirmed that the 54-inch long silicon carbide bayonet could produce in excess of the design objective of 100 liters/hr of SO{sub 2} at 2 bar. Furthermore, at 3 bar the system produced 135 liters/hr of SO{sub 2} with only 31 mol% acid. The gas production rate was close to the theoretical maximum determined by equilibrium, which indicates that the design provides adequate catalyst contact and heat transfer. Several design improvements were also implemented to greatly minimize leakage of SO{sub 2} out of the apparatus. The primary modifications were a separate additional enclosure within the skid enclosure, and replacement of Teflon tubing with glass-lined steel pipes.
The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.
This report documents the key safety and operational aspects of a Z-pinch Externally Driven Nuclear Assembly (ZEDNA) reactor concept which is envisioned to be built and operated at the Z-machine facility in Technical Area IV. Operating parameters and reactor neutronic conditions are established that would meet the design requirements of the system. Accident and off-normal conditions are analyzed using a point-kinetics, one-dimensional thermo-mechanical code developed specifically for ZEDNA applications. Downwind dose calculations are presented to determine the potential dose to the collocated worker and public in the event of a hypothetical catastrophic accident. Current and magnetic impulse modeling and the debris shield design are examined for the interface between the Z machine and the ZEDNA. This work was performed as part of the Advanced Fusion Grand Challenge Laboratory Directed Research and Development Program. The conclusion of this work is that the ZEDNA concept is feasible and could be operated at the Z-machine facility without undue risk to collocated workers and the public.
A series of pressurized sulfuric acid decomposition tests are being performed to (1) obtain data on the fraction of sulfuric acid catalytically converted to sulfur dioxide, oxygen, and water as a function of temperature and pressure, (2) demonstrate real-time measurements of acid conversion for use as process control in the Sulfur-Iodine (SI) thermochemical cycle, and (3) obtain multiple measurements of conversion as a function of temperature within a single experiment. Acid conversion data are presented at pressures of 6 and 11 bars in the temperature range of 750 - 875 °C. The design for an acid decomposer section with heat and mass recovery of undecomposed acid using a direct contact heat exchanger are presented.
A series of pressurized sulfuric acid decomposition tests are being performed to (1) obtain data on the fraction of sulfuric acid catalytically converted to sulfur dioxide, oxygen, and water as a function of temperature and pressure, (2) demonstrate real-time measurements of acid conversion for use as process control in the Sulfur-Iodine (SI) thermochemical cycle, and (3) obtain multiple measurements of conversion as a function of temperature within a single experiment. Acid conversion data are presented at pressures of 6 and 11 bars in the temperature range of 750 - 875 °C. The design for an acid decomposer section with heat and mass recovery of undecomposed acid using a direct contact heat exchanger are presented.