Publications

Results 51–75 of 149

Search results

Jump to search filters

System Studies for Global Nuclear Assurance & Security: 3S Risk Analysis for Small Modular Reactors (Volume I)—Technical Evaluation of Safety Safeguards & Security

Williams, Adam D.; Osborn, Douglas M.; Bland, Jesse J.; Cardoni, Jeffrey N.; Cohn, Brian C.; Faucett, Christopher F.; Gilbert, Luke J.; Haddal, Risa H.; Horowitz, Steven M.; Majedi, Mike M.; Snell, Mark K.

Coupling interests in small modular reactors (SMR) as efficient and effective method to meet increasing energy demands with a growing aversion to cost and schedule overruns traditionally associated with the current fleet of commercial nuclear power plants (NPP), SMRs are attractive because they offer a significant relative cost reduction to current-generation nuclear reactors—increasing their appeal around the globe. Sandia's Global Nuclear Assurance and Security (GNAS) research perspective reframes the discussion around the "complex risk" of SMRs to address interdependencies between safety, safeguards, and security. This systems study provides technically rigorous analysis of the safety, safeguards, and security risks of SMR technologies. The aim of this research is three-fold. The first aim is to provide analytical evidence to support safety, safeguards, and security claims related to SMRs (Study Report Volume I). Second, this study aims to introduce a systems-theoretic approach for exploring interdependencies between the technical evaluations (Study Report Volume II). The third aim is to demonstrate Sandia's capability for timely, rigorous, and technical analysis to support emerging complex GNAS mission objectives.

More Details

System Studies for Global Nuclear Assurance & Security: 3S Risk Analysis for Small Modular Reactors (Volume II). Conclusions & Implications

Williams, Adam D.; Osborn, Douglas M.; Cohn, Brian C.

Coupling interests in small modular reactors (SMR) as efficient and effective method to meet increasing energy demands with a growing aversion to cost and schedule overruns traditionally associated with the current fleet of commercial nuclear power plants (NPP), SMRs are attractive because they offer a significant relative cost reduction to current-generation nuclear reactors-- increasing their appeal around the globe. Sandia's Global Nuclear Assurance and Security (GNAS) research perspective reframes the discussion around the "complex risk" of SMRs to address interdependencies between safety, safeguards, and security. This systems study provides technically rigorous analysis of the safety, safeguards, and security risks of SMR technologies. The aims of this research is three-fold. The first aim is to provide analytical evidence to support safety, safeguards, and security claims related to SMRs (Study Report Volume I). Second, this study aims to introduce a systems-theoretic approach for exploring interdependencies between the technical evaluations (Study Report Volume II). The third aim is to demonstrate Sandia's capability for timely, rigorous, and technical analysis to support emerging complex GNAS mission objectives.

More Details

Terry Turbopump Expanded Operating Band Full-Scale Integral Long-Term Low-Pressure Experiments — Preliminary Test Plan

Osborn, Douglas M.; Solom, Matthew A.

This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 5 (full-scale integral long-term low-pressure operations) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

More Details

Domestic Nuclear Power Plant Physical Security Reevaluation - High-Level Project Plan

Osborn, Douglas M.; Snell, Mark K.; Clefton, Gordon; Yadav, Vaibhav

The goal for this effort is a validated method which can be used to implement an updated physical security regime to optimize the physical security at domestic nuclear power plants (existing and future). It is the intent for the evaluation recommendations to provide the technical basis for an optimized plant security posture, which could consider reduce conservatisms in that posture, and potentially reduce security costs for the nuclear industry while meeting all security requirements.

More Details

Terry Turbopump Analytical Modeling Efforts in Fiscal Year 2018. Progress Report

Osborn, Douglas M.; Cardoni, Jeffrey N.; Ross, Kyle R.

This document details the computational fluid dynamic and system-level modeling, including a mechanistic representation of a Terry turbopump. Until this recent effort, data and modeling results show that a Terry turbine, flowing air (or steam) at a certain rate, can develop the same power at two very different speeds, and has large implications with respect to understanding how a boiling water reactor's reactor core isolation cooling system or a pressurized water reactor turbine driven auxiliary feedwater system would respond to a loss of electrical power for Terry turbine speed governing. This work has provided insights in modeling uncertainties and provides confirmation for experimental efforts for the Terry turbopump expanded operating band being conducted at Texas A&M University.

More Details

Terry Turbopump Analytical Modeling Efforts in Fiscal Year 2017 (Progress Report)

Osborn, Douglas M.; Cardoni, Jeffrey N.; Ross, Kyle R.

This document details the computational fluid dynamic and system-level modeling, including a mechanistic representation of a turbine/pump, for Fukushima Daiichi Unit 2. Until this recent effort, mechanistic modeling had been confined to an otherwise coarse model of Fukushima Daiichi Unit 2 laden with manipulations of boundary conditions that substituted for detailed representations of the reactor, drywell, and wetwell. This work has provided insights in modeling uncertainties and provides confirmation for experimental efforts for the Terry turbopump.

More Details

Terry Turbopump Analytical Modeling Efforts in Fiscal Year 2016 - Progress Report

Osborn, Douglas M.; Ross, Kyle R.; Cardoni, Jeffrey N.

This document details the Fiscal Year 2016 modeling efforts to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) experiments. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

More Details

Sequoyah SOARCA uncertainty analysis of a STSBO accident

PSAM 2018 - Probabilistic Safety Assessment and Management

Bixler, Nathan E.; Dennis, Matthew L.; Brooks, Dusty M.; Osborn, Douglas M.; Ghosh, S.T.; Hathaway, Alfred

The U.S. Nuclear Regulatory Commission initiated the state-of-the-art reactor consequence analyses (SOARCA) project to develop realistic estimates of the offsite radiological health consequences for potential severe reactor accidents. The SOARCA analysis of an ice condenser containment plant was performed because its relatively low design pressure and reliance on igniters makes it potentially susceptible to early containment failure from hydrogen combustion during a severe accident. The focus was on station blackout accident scenarios where all alternating current power is lost. Accident progression calculations used the MELCOR computer code and offsite consequence analyses were performed with MACCS. The analysis included more than 500 MELCOR and MACCS simulations to account for uncertainty in important accident progression and offsite consequence input parameters. Consequences from severe nuclear power plant accidents modeled in this and previous SOARCA analyses are smaller than calculated in earlier studies. The delayed releases calculated provide more time for emergency response actions. The results show that early containment failure is very unlikely, even without successful use of igniters. However, these results are dependent on the distributions assigned to safety valve failure-to-close parameters, and considerable uncertainty remains on the true distributions for these parameters due to very limited test data. Even for scenarios resulting in early containment failure, the calculated individual latent fatal cancer risks are very small. Early and latent-cancer fatality risks are one focus of this paper. Regression results showing the most influential parameters are also discussed.

More Details

Hypothetical Case and Scenario Description for International Transportation of Spent Nuclear Fuel

Williams, Adam D.; Osborn, Douglas M.; Jones, Katherine A.; Kalinina, Elena A.; Cohn, Brian C.; Thomas, Maikael A.; Parks, Mancel J.; Parks, Ethan R.; Mohagheghi, Amir H.

To support more rigorous analysis on global security issues at Sandia National Laboratories (SNL), there is a need to develop realistic data sets without using "real" data or identifying "real" vulnerabilities, hazards or geopolitically embarrassing shortcomings. In response, an interdisciplinary team led by subject matter experts in SNL's Center for Global Security and Cooperation (CGSC) developed a hypothetical case description. This hypothetical case description assigns various attributes related to international SNF transportation that are representative, illustrative and indicative of "real" characteristics of "real" countries. There is no intent to identify any particular country and any similarity with specific real-world events is purely coincidental. To support the goal of this report to provide a case description (and set of scenarios of concern) for international SNF transportation inclusive of as much "real-world" complexity as possible -- without crossing over into politically sensitive or classified information -- this SAND report provides a subject matter expert-validated (and detailed) description of both technical and political influences on the international transportation of spent nuclear fuel.

More Details
Results 51–75 of 149
Results 51–75 of 149