Publications

Results 26–50 of 61

Search results

Jump to search filters

Notes on a New Coherence Estimator

Bickel, Douglas L.

This document discusses some interesting features of the new coherence estimator in [1] . The estimator is d erived from a slightly different viewpoint. We discuss a few properties of the estimator, including presenting the probability density function of the denominator of the new estimator , which is a new feature of this estimator . Finally, we present an appr oximate equation for analysis of the sensitivity of the estimator to the knowledge of the noise value. ACKNOWLEDGEMENTS The preparation of this report is the result of an unfunded research and development activity. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

More Details

Antenna phase center locations in tapered aperture subarrays

Proceedings of SPIE - The International Society for Optical Engineering

Doerry, Armin; Bickel, Douglas L.

Antenna apertures are often parsed into subapertures for Direction of Arrival (DOA) measurements. However, when the overall aperture is tapered for sidelobe control, the locations of phase centers for the individual subapertures are shifted due to the local taper of individual subapertures. Furthermore, individual subaperture gains are also affected. These non-uniform perturbations complicate DOA calculations. Techniques are presented to calculate subaperture phase center locations, and algorithms are given for equalizing subapertures' gains.

More Details

Phase Centers of Subapertures in a Tapered Aperture Array

Doerry, Armin; Bickel, Douglas L.

Antenna apertures that are tapered for sidelobe control can also be parsed into subapertures for Direction of Arrival (DOA) measurements. However, the aperture tapering complicates phase center location for the subapertures, knowledge of which is critical for proper DOA calculation. In addition, tapering affects subaperture gains, making gain dependent on subaperture position. Techniques are presented to calculate subaperture phase center locations, and algorithms are given for equalizing subapertures’ gains. Sidelobe characteristics and mitigation are also discussed.

More Details

On Radar Resolution in Coherent Change Detection

Bickel, Douglas L.

It is commonly observed that resolution plays a role in coherent change detection. Although this is the case, the relationship of the resolution in coherent change detection is not yet defined . In this document, we present an analytical method of evaluating this relationship using detection theory. Specifically we examine the effect of resolution on receiver operating characteristic curves for coherent change detection.

More Details

Single-Axis Three-Beam Amplitude Monopulse Antenna-Signal Processing Issues

Doerry, Armin; Bickel, Douglas L.

Typically, when three or more antenna beams along a single axis are required, the answer has been multiple antenna phase-centers, essentially a phase-monopulse system. Such systems and their design parameters are well-reported in the literature. Less appreciated is that three or more antenna beams can also be generated in an amplitude-monopulse fashion. Consequently, design guidelines and performance analysis of such antennas is somewhat under-reported in the literature. We provide discussion herein of three beams arrayed in a single axis with an amplitude-monopulse configuration. Acknowledgements The preparation of this report is the result of an unfunded research and development activity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administ ration under contract DE-AC04-94AL85000.

More Details

Limits to Clutter Cancellation in Multi-Aperture GMTI Data

Doerry, Armin; Bickel, Douglas L.

Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler characteristics similar to clutter. Herein we examine the performance of several subaperture architectures for their clutter cancelling performance. Significantly, more antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting targets.

More Details

GMTI Direction of Arrival Measurements from Multiple Phase Centers

Doerry, Armin; Bickel, Douglas L.

Ground Moving Target Indicator (GMTI) radar attempts to detect and locate targets with unknown motion. Very slow-moving targets are difficult to locate in the presence of surrounding clutter. This necessitates multiple antenna phase centers (or equivalent) to offer independent Direction of Arrival (DOA) measurements. DOA accuracy and precision generally remains dependent on target Signal-to-Noise Ratio (SNR), Clutter-toNoise Ratio (CNR), scene topography, interfering signals, and a number of antenna parameters. This is true even for adaptive techniques like Space-Time-AdaptiveProcessing (STAP) algorithms.

More Details

Coherence model for building layover in interferometric SAR

Proceedings of SPIE - The International Society for Optical Engineering

Bickel, Douglas L.

The complex coherence function describes information that is necessary to create maps from interferometric synthetic aperture radar (InSAR). This coherence function is complicated by building layover. This paper presents a mathematical model for this complex coherence in the presence of building layover and shows how it can describe intriguing phenomena observed in real interferometric SAR data.

More Details

Estimating Radar Velocity using Direction of Arrival Measurements

Doerry, Armin; Horndt, Volker; Bickel, Douglas L.; Naething, Richard M.

Direction of Arrival (DOA) measurements, as with a monopulse antenna, can be compared against Doppler measurements in a Synthetic Aperture Radar ( SAR ) image to determine an aircraft's forward velocity as well as its crab angle, to assist the aircraft's navigation as well as improving high - performance SAR image formation and spatial calibration.

More Details

Apodization of Spurs in Radar Receivers Using Multi-Channel Processing

Doerry, Armin; Bickel, Douglas L.

Spurious energy in received radar data is a consequence of nonideal component and circuit behavior. This might be due to I/Q imbalance, nonlinear component behavior, additive interference (e.g. cross-talk, etc.), or other sources. The manifestation of the spurious energy in a range-Doppler map or image can be influenced by appropriate pulse-to-pulse phase modulation. Comparing multiple images having been processed with the same data but different signal paths and modulations allows identifying undesired spurs and then cropping or apodizing them.

More Details

Some comments on performance requirements for DMTI radar

Proceedings of SPIE - The International Society for Optical Engineering

Doerry, Armin; Bickel, Douglas L.; Raynal, Ann M.

In recent years, a new class of Moving Target Indicator (MTI) radars has emerged, namely those whose mission included detecting moving people, or “dismounts.â€This new mode is frequently termed Dismount-MTI, or DMTI. Obviously, detecting people is a harder problem than detecting moving vehicles, necessitating different specifications for performance and hardware quality. Herein we discuss some performance requirements typical of successful DMTI radar modes and systems.. © 2014 SPIE.

More Details

SAR image effects on coherence and coherence estimation

Bickel, Douglas L.

Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

More Details

Precomparator and postcomparator errors in monopulse

Bickel, Douglas L.

Monopulse radar is a well-established technique for extracting accurate target location information in the presence of target scintillation. It relies on the comparison of at least two patterns being received simultaneously by the antenna. These two patterns are designed to differ in the direction in which we wish to obtain the target angle information. The two patterns are compared to each other through a standard method, typically by forming the ratio of the difference of the patterns to the sum of the patterns. The key to accurate angle information using monopulse is that the mapping function from the target angle to this ratio is well-behaved and well-known. Errors in the amplitude and phase of the signals prior and subsequent to the comparison operation affect the mapping function. The purpose of this report is to provide some intuition into these error effects upon the mapping function.

More Details

Radar cross section statistics of dismounts at Ku-band

Proceedings of SPIE - The International Society for Optical Engineering

Raynal, Ann M.; Burns, Bryan L.; Verge, Tobias J.; Bickel, Douglas L.; Dunkel, Ralf; Doerry, Armin

Knowing the statistical characteristics of a target's radar cross-section (RCS) is crucial to the success of radar target detection algorithms. A wide range of applications currently exist for dismount (i.e. human body) detection and monitoring using ground-moving target indication (GMTI) radar systems. Dismounts are particularly challenging to detect. Their RCS is orders of magnitude lower than traditional GMTI targets, such as vehicles. Their velocity of about 0 to 1.5 m/s is also much slower than vehicular targets. Studies regarding the statistical nature of the RCS of dismounts focus primarily on simulations or very limited empirical data at specific frequencies. This paper seeks to enhance the existing body of work on dismount RCS statistics at Ku-band, which is currently lacking, and has become an important band for such remote sensing applications. We examine the RCS probability distributions of different sized humans in various stances, across aspect and elevation angle, for horizontal (HH) and vertical (VV) transmit/receive polarizations, and at diverse resolutions, using experimental data collected at Ku-band. We further fit Swerling target models to the RCS distributions and suggest appropriate detection thresholds for dismounts in this band. © 2010 SPIE.

More Details

Clutter locus equation for more general linear array orientation

Proceedings of SPIE - The International Society for Optical Engineering

Bickel, Douglas L.

The clutter locus is an important concept in space-time adaptive processing (STAP) for ground moving target indicator (GMTI) radar systems. The clutter locus defines the expected ground clutter location in the angle-Doppler domain. Typically in literature, the clutter locus is presented as a line, or even a set of ellipsoids, under certain assumptions about the geometry of the array. Most often, the array is assumed to be in the horizontal plane containing the velocity vector. This paper will give a more general 3-dimensional interpretation of the clutter locus for a general linear array orientation. © 2010 SPIE.

More Details
Results 26–50 of 61
Results 26–50 of 61