High-energy photons and neutrons can be used to actively interrogate for heavily shielded special nuclear material (SNM), such as HEU (highly enriched uranium), by detecting prompt and/or delayed induced fission signatures. In this work, we explore the underlying physics for a new type of photon source that generates high fluxes of mono-energetic gamma-rays from low-energy (<500 keV) proton-induced nuclear reactions. The characteristic energies (4- to 18-MeV) of the gamma-rays coincide with the peak of the photonuclear cross section. The source could be designed to produce gamma-rays of certain selected energies, thereby improving the probability of detecting shielded HEU or providing a capability to determine enrichment inside sealed containers. The fundamental physics of such an interrogation source were studied in this LDRD through scaled ion accelerator experiments and radiation transport modeling. The data were used to assess gamma and neutron yields, background, and photofission-induced signal levels from several (p,{gamma}) target materials under consideration.
The ion photon emission microscope, or IPEM, is the first device that allows scientists to microscopically study the effects of single ions in air on semiconductors, microchips and even biological cells without having to focus the beam. Reported here is a prototype, the size of a conventional optical microscope, developed at Sandia. The alpha-IPEM, that employs alpha particles from a radioactive source, represents the first example of IBA imaging without an accelerator. The IPEM resolution is currently limited to 10 {micro}m, but we also report a gridded-phosphor approach that could improve this resolution to that of the optical microscope, or {approx} 1 {micro}m. Finally, we propose that a simple adaptation of the alpha-IPEM could be the only way to maintain the high utility of radiation effects microscopy into the future.
The irradiation of thin insulating films by high-energy ions (374 MeV Au{sup +25} or 241 MeV I{sup +19}) was used to attempt to form nanometer-size pores through the films spontaneously. Such ions deposit a large amount of energy into the target materials ({approx}20 keV/nm), which significantly disrupts their atomic lattice and sputters material from the surfaces, and might produce nanopores for appropriate ion-material combinations. Transmission electron microscopy was used to examine the resulting ion tracks. Tracks were found in the crystalline oxides quartz, sapphire, and mica. Sapphire and mica showed ion tracks that are likely amorphous and exhibit pits 5 nm in diameter on the surface at the ion entrance and exit points. This suggests that nanopores might form in mica if the film thickness is less than {approx}10 nm. Tracks in quartz showed strain in the matrix around them. Tracks were not found in the amorphous thin films examined: 20 nm-SiN{sub x}, deposited SiOx, fused quartz (amorphous SiO{sub 2}), formvar and 3 nm-C. Other promising materials for nanopore formation were identified, including thin Au and SnO{sub 2} layers.
We have studied the feasibility of an innovative device to sample 1ns low-power single current transients with a time resolution better than 10 ps. The new concept explored here is to close photoconductive semiconductor switches (PCSS) with a Laser for a period of 10 ps. The PCSSs are in a series along a Transmission Line (TL). The transient propagates along the TL allowing one to carry out a spatially resolved sampling of charge at a fixed time instead of the usual timesampling of the current. The fabrication of such a digitizer was proven to be feasible but very difficult.
Microelectronic devices in satellites and spacecraft are exposed to high energy cosmic radiation. Furthermore, Earth-based electronics can be affected by terrestrial radiation. The radiation causes a variety of Single Event Effects (SEE) that can lead to failure of the devices. High energy heavy ion beams are being used to simulate both the cosmic and terrestrial radiation to study radiation effects and to ensure the reliability of electronic devices. Broad beam experiments can provide a measure of the radiation hardness of a device (SEE cross section) but they are unable to pinpoint the failing components in the circuit. A nuclear microbeam is an ideal tool to map SEE on a microscopic scale and find the circuit elements (transistors, capacitors, etc.) that are responsible for the failure of the device. In this paper a review of the latest radiation effects microscopy (REM) work at Sandia will be given. Different SEE mechanisms (Single Event Upset, Single Event Transient, etc.) and the methods to study them (Ion Beam Induced Charge (IBIC), Single Event Upset mapping, etc.) will be discussed. Several examples of using REM to study the basic effects of radiation in electronic devices and failure analysis of integrated circuits will be given.
High-energy ion tracks (374 MeV Au{sup 26+}) in thin films were examined with transmission electron microscopy to investigate nanopore formation. Tracks in quartz and mica showed diffraction contrast. Tracks in sapphire and mica showed craters formed at the positions of ion incidence and exit, with a lower-density track connecting them. Direct nanopore formation by ions (without chemical etching) would appear to require film thicknesses less than 10 nm.
Sandia and Rontec have developed an annular, 12-element, 60 mm{sup 2}, Peltier-cooled, translatable, silicon drift detector called the SDD-12. The body of the SDD-12 is only 22.8 mm in total thickness and easily fits between the sample and the upstream wall of the Sandia microbeam chamber. At a working distance of 1 mm, the solid angle is 1.09 sr. The energy resolution is 170 eV at count rates <40 kcps and 200 eV for rates of 1 Mcps. X-ray count rates must be maintained below 50 kcps when protons are allowed to strike the full area of the SDD. Another innovation with this new {mu}PIXE system is that the data are analyzed using Sandia's Automated eXpert Spectral Image Analysis (AXSIA).
Rare earth doped yttrium oxide (yttria) and silicate, Y{sub 2}O{sub 3}:Eu and Y{sub 2}SiO{sub 5}:Tb, are the most promising phosphors for advanced devices such as flat panel field-emission-displays. However, their light yield for electron excitation has proven to be lower than that predicted by early models. New experimental data are needed to improve the theoretical understanding of the cathodoluminescence (CL) that will, in turn, lead to materials that are significantly brighter. Beside the existing CL and photo luminescence (PL) measurements, one can provide new information by studying ion-induced luminescence (IL). Ions penetrate substantially deeper than electrons and their light yield should therefore not depend on surface effects. Moreover, the energy density released by ions can be much higher than that of electrons and photons, which results in possible saturation effects, further testing the adequacy of models. We exposed the above yttrium compounds to three ion beams, H (3 MeV), C (20 MeV), Cu (50 MeV), which have substantially different electronic stopping powers. H was selected to provide an excitation close to CL, but without surface effects. The C and Cu allowed an evaluation of saturation effects because of their higher stopping powers. The IL experiments involved measuring the transient light intensity signal radiating from thin phosphor layers following their exposure to {approx}200 ns ion beam pulses. We present the transient yield curves for the two materials and discuss a general model for this behavior.
We give the results of a study using Monte Carlo ion interaction codes to simulate and optimize elastic recoil detection analysis for {sup 3}He buildup in tritide films. Two different codes were used. The primary tool was MCERD, written especially for simulating ion beam analysis using optimizations and enhancements for greatly increasing the probabilities for the creation and the detection of recoil atoms. MPTRIM, an implementation of the TRIMRC code for a massively parallel computer, was also used for comparison and for determination of absolute yield. This study was undertaken because of a need for high-resolution depth profiling of 3He and near-surface light impurities (e.g. oxygen) in metal hydride films containing tritium.
Multiple scattering effects in ERD measurements are studied by comparing two Monte Carlo simulation codes, representing different approaches to obtain acceptable statistics, to experimental spectra measured from a HfO{sub 2} sample with a time-of-flight-ERD setup. The results show that both codes can reproduce the absolute detection yields and the energy distributions in an adequate way. The effect of the choice of the interatomic potential in multiple scattering effects is also studied. Finally the capabilities of the MC simulations in the design of new measurement setups are demonstrated by simulating the recoil energy spectra from a WC{sub x}N{sub y} sample with a low energy heavy ion beam.
Cross-sections for the elastic recoil of hydrogen isotopes, including tritium, have been measured for {sup 4}He{sup 2+} ions in the energy range of 9.0-11.6 MeV. These cross-sections have been measured at a scattering angle of 30{sup o} in the laboratory frame. Cross-sections were measured by allowing a {sup 4}He{sup 2+} beam to fall incident on solid targets of ErH{sub 2}, ErD{sub 2} and ErT{sub 2}, each of 500 nm nominal thickness and known areal densities of H, D, T and Er. The uncertainty in each cross-section is estimated to be {+-}3.2%.
Hydrogen isotope thin film standards have been manufactured at Sandia National Laboratories for use by the materials characterization community. Several considerations were taken into account during the manufacture of the ErHD standards, with accuracy and stability being the most important. The standards were fabricated by e-beam deposition of Er onto a Mo substrate and the film stoichiometrically loaded with hydrogen and deuterium. To determine the loading accuracy of the standards two random samples were measured by thermal desorption mass spectrometry and atomic absorption spectrometry techniques with a stated combined accuracy of {approx}1.6% (1{sigma}). All the standards were then measured by high energy RBS/ERD and RBS/NRA with the accuracy of the techniques {approx}5% (1{sigma}). The standards were then distributed to the IBA materials characterization community for analysis. This paper will discuss the suitability of the standards for use by the IBA community and compare measurement results to highlight the accuracy of the techniques used.
The effects of photocurrents in nuclear weapons induced by proximal nuclear detonations are well known and remain a serious hostile environment threat for the US stockpile. This report describes the final results of an LDRD study of the physical phenomena underlying prompt photocurrents in microelectronic devices and circuits. The goals of this project were to obtain an improved understanding of these phenomena, and to incorporate improved models of photocurrent effects into simulation codes to assist designers in meeting hostile radiation requirements with minimum build and test cycles. We have also developed a new capability on the ion microbeam accelerator in Sandia's Ion Beam Materials Research Laboratory (the Transient Radiation Microscope, or TRM) to supply ionizing radiation in selected micro-regions of a device. The dose rates achieved in this new facility approach those possible with conventional large-scale dose-rate sources at Sandia such as HERMES III and Saturn. It is now possible to test the physics and models in device physics simulators such as Davinci in ways not previously possible. We found that the physical models in Davinci are well suited to calculating prompt photocurrents in microelectronic devices, and that the TRM can reproduce results from conventional large-scale dose-rate sources in devices where the charge-collection depth is less than the range of the ions used in the TRM.
Ion Beam Induced Luminescence (IBIL) and Ion Beam Induced Charge Collection (IBICC) have been applied in the study of the luminescence emission efficiency and investigation of the homogeneity of the luminescence emission in phosphors. The IBIL imaging was performed by using sharply focused ion beams or broad/partially-focused ion beams. The luminescence emission homogeneity in samples was examined to reveal possible distributed crystal-defects that may lead to the inhomogeneity of the luminescence emission in samples.The purpose of the study is to search for suitable luminescent thin films that have high homogeneity of luminescence emission, large IBIL efficiency under heavy ion excitation, and can be placed as a thin layer on the top of microelectronic devices to be analyzed with Ion Photon Emission Microscopy (IPEM). The emission yield was found to be low for organic materials, due to saturation of the light output dependence on the energy deposition of heavy ions. The emission yield of a typical Bicron plastic scintillator is about 70 photons/ion/micron. Inorganic materials may have higher IBIL yield under high-energy and heavy-ion excitation, but the challenging problem is the inhomogeneity of the IBIL emission. The IBIL image techniques are applied in the investigation of the homogeneity of a GaN epitaxial thin film, a zircon single crystal and a thin layer coated by Thiogallate(EuII) ceramic.
To design more radiation tolerant Integrated Circuits (ICs), it is essential to create and test accurate models of ionizing radiation induced charge collection dynamics within microcircuits. A new technique, Diffusion Time Resolved Ion Beam Induced Charge Collection (DTRIBICC), is proposed to measure the average arrival time of the diffused charge at the junction. Specially designed stripe-like junctions were experimentally studied using a 12 MeV carbon microbeam with a spot size of 1 {micro}m. The relative arrival time of ion-generated charge is measured along with the charge collection using a multiple parameter data acquisition system. The results show the importance of the diffused charge collection by junctions, which is especially significant in accounting for Multiple Bit Upset (MBUs) in digital devices.
Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.
A technique has been developed for producing calibrated metal hydride films for use in the measurement of high-energy (5--15 MeV) particle reaction cross sections for hydrogen and helium isotopes on hydrogen isotopes. Absolute concentrations of various hydrogen isotopes in the film is expected to be determined to better than {+-}2% leading to the capacity of accurately measuring various reaction cross sections. Hydrogen isotope concentrations from near 100% to 5% can be made accurately and reproducibly. This is accomplished with the use of high accuracy pressure measurements coupled with high accuracy mass spectrometric measurements of each constituent partial pressure of the gas mixture during loading of the metal occluder films. Various techniques are used to verify the amount of metal present as well as the amount of hydrogen isotopes; high energy ion scattering analysis, PV measurements before, during and after loading, and thermal desorption/mass spectrometry measurements. The most appropriate metal to use for the occluder film appears to be titanium but other occluder metals are also being considered. Calibrated gas ratio samples, previously prepared, are used for the loading gas. Deviations from this calibrated gas ratio are measured using mass spectrometry during and after the loading process thereby determining the loading of the various hydrogen isotopes. These techniques are discussed and pertinent issues presented.
The electronic transport properties of Cadmium Zinc Telluride (CZT) determine the charge collection efficiency (i.e. the signal quality) of CZT detectors. These properties vary on both macroscopic and microscopic scale and depend on the presence of impurities and defects introduced during the crystal growth. Ion Beam Induced Charge Collection (IBICC) is a proven method to measure the charge collection efficiency. Using an ion microbeam, the charge collection efficiency can be mapped with submicron resolution, and the map of electronic properties (such as drift length) can be calculated from the measurement. A more sophisticated version of IBICC, the Time Resolved IBICC (TRIBICC) allows them to determine the mobility and the life time of the charge carriers by recording and analyzing the transient waveform of the detector signal. Furthermore, lateral IBICC and TRIBICC can provide information how the charge collection efficiency depends on the depth where the charge carriers are generated. This allows one to deduce information on the distribution of the electric field and transport properties of the charge carriers along the detector axis. IBICC and TRIBICC were used at the Sandia microbeam facility to image electronic properties of several CZT detectors. From the lateral TRIBICC measurement the electron and hole drift length profiles were calculated.
This paper presents ion beam induced charge collection (IBICC) contrast images showing regions of differing charge collection efficiency within optoelectronic modulator devices. The experiments were carried out at the Sandia nuclear microprobe using 18 MeV carbon and 2 MeV helium ions. Lines of varying densities are observed to run along the different {l_brace}110{r_brace} directions which correlate with misfit dislocations within the 392nm thick strained layer superlattice quantum well of the modulator structure. Independent cross-sectional TEM studies and the electrical properties of the devices under investigation suggest the presence of threading dislocations in the active device region at a density of {approximately} 10{sup 6} cm{sup {minus}2}. However, no clear evidence of threading dislocations was observed in the IBICC images as they are possibly masked by the strong contrast of the misfit dislocations. Charge carrier transport within the modulator is used to explain the observed contrast. The different signal to noise levels and rates of damage of the incident ions are assessed.
An acousto-optic (AO) deflector composed of PbMoO4 was exposed to 4 MeV protons while operating under Bragg angle conditions. An ion beam in air of 1 mm width was directed normal to the crystal face and laser beam. Between exposures, the approximately 13 mm × 8.5 mm AO deflector was mechanically translated in two dimensions in front of the fixed ion beam. The AO diffraction efficiency was mapped and was observed to change as a function of ion beam location and dose rate. These effects are attributed to the induced change in the temperature distribution of the crystal, which changed the sonic velocity and refractive index. Similar effects were observed when the ion beam was directed at the acoustic transducer.
This paper presents ion beam induced charge collection (IBICC) contrast images showing regions of differing charge collection efficiency within optoelectronic modulator devices. The experiments were carried out at the Sandia nuclear microprobe using 18 MeV carbon and 2 MeV helium ions. Lines of varying densities are observed to run along the different (110) directions which correlate with misfit dislocations within the 392nm thick strained-layer superlattice quantum well of the modulator structure. Independent cross-sectional TEM studies and the electrical properties of the devices under investigation suggest the presence of threading dislocations in the active device region at a density of {approximately}10{sup 6} cm{sup {minus}2}. However, no clear evidence of threading dislocations was observed in the IBICC images as they are possibly masked by the strong contrast of the misfit dislocations. Charge carrier transport within the modulator is used to explain the observed contrast. The different signal to noise levels and rates of damage of the incident ions are assessed.
The authors have demonstrated the utility of microbeam - Rutherford Back Scattering ({mu} RBS) in spatially resolved studies of operational plasma effects on the interior surfaces of plasma flat panel displays manufactured by Photonics Imaging. The experiments were performed at the Sandia Nuclear microprobe using a 2.8 MeV He beam with an average beam spot size of less than 8{mu}m. The interior surface of the top panes of the flat panels is composed of approximately 800 nm of MgO on top of a 2000nm thick PbO layer. {mu}-RBS of sample panels operated under varying conditions measured changes in the surface MgO film thickness due to plasma erosion and redeposition as accurately as {+-}1.5 nm. The high accuracy in the MgO thickness measurement was achieved by inferring the MgO thickness from the shift of the Pb front edge in the RBS spectrum. An estimate for the thickness accuracy as a function of the acquired statistics is presented. The surface of the flat panels` bottom panes is also comprised of MgO on top of PbO. However, troughs {approximately}100 {mu}m wide by 10{mu}m deep were partially filled with phosphor and cover the entire width of the surface. This leaves only 100pm long sections of MgO within the trough exposed. Using {mu}-RBS, the authors were able to analyze the surface composition of these regions.
Rutherford backscattering spectrometry (RBS), elastic recoil detection (ERD), proton induced x-ray emission (PIXE) and nuclear reaction analysis (NRA) are among the most commonly used, or traditional, ion beam analysis (IBA) techniques. In this review, several adaptations of these IBA techniques are described where either the approach used in the analysis or the application area is clearly non-traditional or unusual. These analyses and/or applications are summarized in this paper.