Recent Advancements in (Al)GaN High Electron Mobility Transistor Power Electronics at Sandia
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
Radiation-hard high-voltage vertical GaN p-n diodes are being developed for use in power electronics subjected to ionizing radiation. We present a comparison of the measured and simulated photocurrent response of diodes exposed to ionizing irradiation with 70 keV and 20 MeV electrons at dose rates in the range of 1.4× 107 - 5.0× 108 rad(GaN)/s. The simulations correctly predict the trend in the measured steady-state photocurrent and agree with the experimental results within a factor of 2. Furthermore, simulations of the transient photocurrent response to dose rates with uniform and non-uniform ionization depth profiles uncover the physical processes involved that cannot be otherwise experimentally observed due to orders of magnitude larger RC time constant of the test circuit. The simulations were performed using an eXploratory Physics Development code developed at Sandia National Laboratories. The code offers the capability to include defect physics under more general conditions, not included in commercially available software packages, extending the applicability of the simulations to different types of radiation environments.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Solid-State Electronics
Al0.26Ga0.74N/GaN on SiC lateral Schottky diodes were fabricated with variable anode-to-cathode spacing and were analyzed for blocking and on-state device performance. On-chip normally-on High Electron Mobility Transistor (HEMT) structures were also fabricated for a comparison of blocking characteristics. The Schottky diode displayed an ideality factor of 1.59 with a Ni/AlGaN zero bias barrier height of 1.18 eV and a flat band barrier height of 1.59 eV. For anode-to-cathode spacings between 10 and 100 μm, an increase in median breakdown voltages from 529 V to 8519 V and median specific on-resistance (Ron-sp) from 1.5 to 60.7 mΩ cm2 was observed with an increase in spacing. The highest performing diode had a lateral figure of merit of 1.37 GW/cm2 corresponding to a breakdown voltage upwards of 9 kV and a Ron-sp of 59 mΩ cm2. This corresponds to the highest Schottky diode breakdown voltage reported thus far with an Al0.26Ga0.74N/GaN lateral structure.
Transactions of the American Nuclear Society
Abstract not provided.
Abstract not provided.
Abstract not provided.