Reactive Rayleigh-Taylor turbulent mixing: a one-dimensional-turbulence study
Geophysical and Astrophysical Fluid Dynamics
Abstract not provided.
Geophysical and Astrophysical Fluid Dynamics
Abstract not provided.
Abstract not provided.
Theoretical and Computational Fluid Dynamics
Abstract not provided.
Theoretical and Computational Fluid Dynamics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Fluid Mechanics
Abstract not provided.
International Journal of Spray and Combustion Dynamics
Abstract not provided.
Physics of Fluids
ODTLES is a novel multi-scale model for 3D turbulent flow based on the one-dimensional-turbulence model of Kerstein ["One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows," J. Fluid Mech. 392, 277 (1999)]. Its key distinction is that it is formulated to resolve small-scale phenomena and capture some 3D large-scale features of the flow with affordable simulations. The present work demonstrates this capability by considering four types of wall-bounded turbulent flows. This work shows that spatial profiles of various flow quantities predicted with ODTLES agree fairly well with those from direct numerical simulations. It also shows that ODTLES resolves the near-wall region, while capturing the following 3D flow features: the mechanism increasing tangential velocity fluctuations near a free-slip wall, the large-scale recirculation region in lid-driven cavity flow, and the secondary flow in square duct flow. © 2011 American Institute of Physics.
Numerical simulations using the One-Dimensional-Turbulence model are compared to water-tank measurements [B. J. Sayler and R. E. Breidenthal, J. Geophys. Res. 103 (D8), 8827 (1998)] emulating convection and entrainment in stratiform clouds driven by cloud-top cooling. Measured dependences of the entrainment rate on Richardson number, molecular transport coefficients, and other experimental parameters are reproduced. Additional parameter variations suggest more complicated dependences of the entrainment rate than previously anticipated. A simple algebraic model indicates the ways in which laboratory and cloud entrainment behaviors might be similar and different.
Physics of Fluids
Abstract not provided.
Abstract not provided.
The parameterization of the fluxes of heat and salt across double-diffusive interfaces is of interest in geophysics, astrophysics, and engineering. The present work is a parametric study of these fluxes using one-dimensional-turbulence (ODT) simulations. Its main distinction is that it considers a parameter space larger than previous studies. Specifically, this work considers the effect on the fluxes of the stability parameter R{sub {rho}}, Rayleigh number Ra, Prandtl number, Lewis number, and Richardson number. The ratio Ra/R{sub {rho}} is found to be a dominant parameter. Here Ra/R{sub {rho}} can be seen as a ratio of destabilizing and stabilizing effects. Trends predicted by the simulations are in good agreement with previous models and available measurements.
Astrophysical Journal
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Fluid Mechanics
Abstract not provided.
Abstract not provided.
Recent work suggests that cloud effects remain one of the largest sources of uncertainty in model-based estimates of climate sensitivity. In particular, the entrainment rate in stratocumulus-topped mixed layers needs better models. More than thirty years ago a clever laboratory experiment was conducted by McEwan and Paltridge to examine an analog of the entrainment process at the top of stratiform clouds. Sayler and Breidenthal extended this pioneering work and determined the effect of the Richardson number on the dimensionless entrainment rate. The experiments gave hints that the interaction between molecular effects and the one-sided turbulence seems to be crucial for understanding entrainment. From the numerical point of view large-eddy simulation (LES) does not allow explicitly resolving all the fine scale processes at the entrainment interface. Direct numerical simulation (DNS) is limited due to the Reynolds number and is not the tool of choice for parameter studies. Therefore it is useful to investigate new modeling strategies, such as stochastic turbulence models which allow sufficient resolution at least in one dimension while having acceptable run times. We will present results of the One-Dimensional Turbulence stochastic simulation model applied to the experimental setup of Sayler and Breidenthal. The results on radiatively induced entrainment follow quite well the scaling of the entrainment rate with the Richardson number that was experimentally found for a set of trials. Moreover, we investigate the influence of molecular effects, the fluids optical properties, and the artifact of parasitic turbulence experimentally observed in the laminar layer. In the simulations the parameters are varied systematically for even larger ranges than in the experiment. Based on the obtained results a more complex parameterization of the entrainment rate than currently discussed in the literature seems to be necessary.