Publications

Results 101–125 of 262

Search results

Jump to search filters

Designing and modeling analog neural network training accelerators

2019 International Symposium on VLSI Technology, Systems and Application, VLSI-TSA 2019

Agarwal, Sapan; Jacobs-Gedrim, Robin B.; Bennett, Christopher; Hsia, Alexander W.; Adee, Shane M.; Hughart, David R.; Fuller, Elliot J.; Li, Yiyang; Talin, Albert A.; Marinella, Matthew

Analog crossbars have the potential to reduce the energy and latency required to train a neural network by three orders of magnitude when compared to an optimized digital ASIC. The crossbar simulator, CrossSim, can be used to model device nonidealities and determine what device properties are needed to create an accurate neural network accelerator. Experimentally measured device statistics are used to simulate neural network training accuracy and compare different classes of devices including TaOx ReRAM, Lir-Co-Oz devices, and conventional floating gate SONOS memories. A technique called 'Periodic Carry' can overcomes device nonidealities by using a positional number system while maintaining the benefit of parallel analog matrix operations.

More Details

A single polymeric template-based full color organic electrochromic device

ACS Applied Materials and Interfaces

Talin, Albert A.

With low-cost and simple processing, organic electrochromic polymers have attracted considerable attention as a promising material platform for flexible and low-energy-consuming optoelectronic devices. However, typical electrochromic polymers can only be switched from natural-colored to oxidized-transparent states. As a result, the complexity of combining several distinct polymers to achieve a full-color gamut has significantly limited the niche applications of electrochromic polymers. Here in this paper we report an electrochromic polymer based on 4,7-di((3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine-3-yl)-3,4-ethylenedioxythiophene) (PEP), which exhibits fast full-color reversible tuning capability and good stability. Furthermore, a red-green-blue flexible electrochromic device just based on poly(PEP) was fabricated, which offers an effective approach to dynamically manipulate color and enables a variety of optoelectronic applications.

More Details

Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing

Science

Fuller, Elliot J.; Keene, Scott T.; Melianas, Armantas; Wang, Zhongrui; Asapu, Shiva; Agarwal, Sapan; Li, Yiyang; Tuchman, Yaakov; James, Conrad D.; Marinella, Matthew; Yang, J.J.; Salleo, Alberto; Talin, Albert A.

Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents <10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support >1-megahertz write-read frequencies.

More Details

Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films before and after Reaction with TCNQ

ACS Applied Materials and Interfaces

Thurmer, Konrad; Stavila, Vitalie; Friddle, Raymond; Leonard, Francois; Allendorf, Mark; Talin, Albert A.; Schneider, Christian; Fischer, Roland A.

HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal-organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from <10-11 S/cm for the parent Cu3BTC2 material to 10-1 S/cm for the resulting Cu(TCNQ) film. The conversion of Cu3BTC2 films, which can be grown and patterned on a variety of (nonplanar) substrates, to Cu(TCNQ) opens the door for the facile fabrication of more complex electronic devices.

More Details
Results 101–125 of 262
Results 101–125 of 262