Publications

12 Results

Search results

Jump to search filters

Energy Analysis of Low-Load Low-Temperature Gasoline Combustion with Auxiliary-Fueled Negative Valve Overlap

SAE International Journal of Engines

Ekoto, Isaac W.; Wolk, Benjamin M.; Northrop, William

In-cylinder reforming of injected fuel during an auxiliary negative valve overlap (NVO) period can be used to optimize main-cycle auto-ignition phasing for low-load Low-Temperature Gasoline Combustion (LTGC), where highly dilute mixtures can lead to poor combustion stability. When mixed with fresh intake charge and fuel, these reformate streams can alter overall charge reactivity characteristics. The central issue remains large parasitic heat losses from the retention and compression of hot exhaust gases along with modest pumping losses that result from mixing hot NVO-period gases with the cooler intake charge. Accurate determination of total cycle energy utilization is complicated by the fact that NVO-period retained fuel energy is consumed during the subsequent main combustion period. For the present study, a full-cycle energy analysis was performed for a single-cylinder research engine undergoing LTGC with varying NVO auxiliary fueling rates and injection timing. A custom alternate-fire sequence with 9 pre-conditioning cycles was used to generate a common exhaust temperature and composition boundary condition for a cycle-of-interest, with performance metrics recorded for each custom cycle. The NVO-period reformate stream and main-period exhaust stream of the cycles-of-interest were separately collected, with sample analysis by gas chromatography used to identify the retained and exhausted fuel energy in the respective periods. To facilitate gas sample analysis, experiments were performed using a 5-component gasoline surrogate (iso-octane, n-heptane, ethanol, 1-hexene, and toluene) that matched the molecular composition, 50% boiling point, and ignition characteristics of a research gasoline. The highest total cycle thermodynamic efficiencies occurred when auxiliary injection timings were early enough to allow sufficient residence time for slow reforming reactions to take place, but late enough to prevent significant fuel spray crevice quench. Increasing the fraction of total fuel energy injected into the NVO-period was also found to increase total cycle thermal efficiencies, in part due to a modest reduction in NVO-period heat loss from a combination of fuel-spray charge cooling and endothermic fuel decomposition by pyrolysis. The effect was most pronounced at the lowest loads where larger charge mass reformate fractions increased overall specific heat ratios and main-period combustion phasing advanced closer to top dead center. These effects improved both expansion efficiency and combustion stability.

More Details

ByLaws for the Governance of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association

McBride, Amber A.; Rodgers, Theron R.; Dong, Wen D.; Juan, Pierre-Alexandre J.; Barkholtz, Heather B.; Alley, William M.; Wolk, Benjamin M.; Vane, Zachary P.; Priye, Aashish P.; Ball, Cameron S.

The purpose of this document is to define the rules of governance for the Sandia Postdoctoral Development (SPD) Association. This includes election procedures for filling vacancies on the SPD board, an all-purpose voting procedure, and definitions for the roles and responsibilities of each SPD board member. The voting procedures can also be used to amend the by-laws, as well as to create, dissolve, or consolidate vacant SPD board positions.

More Details

Charter of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association

McBride, Amber A.; Rodgers, Theron R.; Dong, Wen D.; Juan, Pierre-Alexandre J.; Barkholtz, Heather B.; Alley, William M.; Wolk, Benjamin M.; Vane, Zachary P.; Priye, Aashish P.; Ball, Cameron S.

The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.

More Details

The impact of carbon dioxide and water on single-pulse nanosecond discharge behavior at elevated density

10th U.S. National Combustion Meeting

Wolk, Benjamin M.; Ekoto, Isaac W.

High-voltage (20 kV peak), single-pulse, nanosecond, low-temperature plasma discharges were examined in nitrogen-diluted desiccated air (15.9% oxygen) with addition of 1%, 2%, and 3% carbon dioxide or water for a pin-to-pin electrode configuration in an optically accessible spark calorimeter at elevated density (2.9 kg/m3). Discharge behavior was characterized through pressure-rise calorimetry, direct imaging of excited-state atomic oxygen, and high-speed schlieren. Increasing carbon dioxide or water concentration led to an increased likelihood of surface discharges rather than the desired streamer discharge between the pin electrodes. For streamer discharges, carbon dioxide addition decreased the electrical-to-thermal conversion efficiency, while minimal impact was observed for water. Both carbon dioxide and water addition led to faster pressure rise rates. Carbon dioxide addition decreased excited state atomic oxygen signal, while water addition led to negligible changes. Finally, increased streamer branching was observed in the schlieren images when carbon dioxide or water was added to the gas mixture.

More Details
12 Results
12 Results