Conceptual models of smectite hydration include planar (flat) clay layers that undergo stepwise expansion as successive monolayers of water molecules fill the interlayer regions. However, X-ray diffraction (XRD) studies indicate the presence of interstratified hydration states, suggesting non-uniform interlayer hydration in smectites. Additionally, recent theoretical studies have shown that clay layers can adopt bent configurations over nanometer-scale lateral dimensions with minimal effect on mechanical properties. Therefore, in this study we used molecular simulations to evaluate structural properties and water adsorption isotherms for montmorillonite models composed of bent clay layers in mixed hydration states. Results are compared with models consisting of planar clay layers with interstratified hydration states (e.g. 1W–2W). The small degree of bending in these models (up to 1.5 Å of vertical displacement over a 1.3 nm lateral dimension) had little or no effect on bond lengths and angle distributions within the clay layers. Except for models that included dry states, porosities and simulated water adsorption isotherms were nearly identical for bent or flat clay layers with the same averaged layer spacing. Similar agreement was seen with Na- and Ca-exchanged clays. In conclusion, while the small bent models did not retain their configurations during unconstrained molecular dynamics simulation with flexible clay layers, we show that bent structures are stable at much larger length scales by simulating a 41.6×7.1 nm2 system that included dehydrated and hydrated regions in the same interlayer.
The formation of magnesium chloride-hydroxide salts (magnesium hydroxychlorides) has implications for many geochemical processes and technical applications. For this reason, a thermodynamic database for evaluating the Mg(OH)2–MgCl2–H2O ternary system from 0 °C–120 °C has been developed based on extensive experimental solubility data. Internally consistent sets of standard thermodynamic parameters (ΔGf°, ΔHf°, S°, and CP) were derived for several solid phases: 3 Mg(OH)2:MgCl2:8H2O, 9 Mg(OH)2:MgCl2:4H2O, 2 Mg(OH)2:MgCl2:4H2O, 2 Mg(OH)2:MgCl2: 2H2O(s), brucite (Mg(OH)2), bischofite (MgCl2:6H2O), and MgCl2:4H2O. First, estimated values for the thermodynamic parameters were derived using a component addition method. These parameters were combined with standard thermodynamic data for Mg2+(aq) consistent with CODATA (Cox et al., 1989) to generate temperature-dependent Gibbs energies for the dissolution reactions of the solid phases. These data, in combination with values for MgOH+(aq) updated to be consistent with Mg2+-CODATA, were used to compute equilibrium constants and incorporated into a Pitzer thermodynamic database for concentrated electrolyte solutions. Phase solubility diagrams were constructed as a function of temperature and magnesium chloride concentration for comparisons with available experimental data. To improve the fits to the experimental data, reaction equilibrium constants for the Mg-bearing mineral phases, the binary Pitzer parameters for the MgOH+ — Cl− interaction, and the temperature-dependent coefficients for those Pitzer parameters were constrained by experimental phase boundaries and to match phase solubilities. These parameter adjustments resulted in an updated set of standard thermodynamic data and associated temperature-dependent functions. The resulting database has direct applications to investigations of magnesia cement formation and leaching, chemical barrier interactions related to disposition of heat-generating nuclear waste, and evaluation of magnesium-rich salt and brine stabilities at elevated temperatures.
Risks associated with carbonation are a key limitation to greater replacement levels of ordinary portland cement (OPC) by supplementary cementitious materials (SCMs). The addition of pozzolanic SCMs in OPC alters the hydrate assemblage by forming phases like calcium-(alumina)-silicate-hydrate (C-(A)-S-H). The objective of the present study was to elucidate how such changes in hydrate assemblage influence the chemical mechanisms of carbonation in a realistic OPC system. Here, we show that synthetic zeolite Y (faujasite) is a highly reactive pozzolan in OPC that reduces the calcium content of hydration products via prompt consumption of calcium hydroxide from the evolving phase assemblage prior to CO2 exposure. Suppression of portlandite at moderate to high zeolite Y content led to a more damaging mechanism of carbonation by disrupting the formation of a passivating carbonate layer. Without this layer, carbonation depth and CO2 uptake are increased. Binders containing 12–18% zeolite Y by volume consumed all the calcium hydroxide from OPC during hydration and reduced the Ca/(Si+Al) ratio of the amorphous products to near 0.67. In these cases, higher carbonation depths were observed after exposure to ambient air with decalcification of C-(A)-S-H as the main source of CO2 buffering. Binders with either 0% or 4% zeolite Y contained calcium hydroxide in the hydrated microstructure, had higher Ca/(Si+Al) ratios, and formed a calcite-rich passivation layer that halted deep carbonation. Although the carbonated layer in the samples with 12% and 18% zeolite Y contained 70% and 76% less calcite than the OPC respectively, their higher carbonation depths resulted in total CO2 uptakes that were 12x greater than the OPC sample. Passivation layer formation in samples with calcium hydroxide explains this finding and was further supported by thermodynamic modeling. High Si/Al zeolite additives to OPC should be balanced with the calcium content for optimal carbonation resistance.
Conceptual models of smectite hydration include planar (flat) clay layers that undergo stepwise expansion as successive monolayers of water molecules fill the interlayer regions. However, X-ray diffraction (XRD) studies indicate the presence of interstratified hydration states, suggesting non-uniform interlayer hydration in smectites. Additionally, recent theoretical studies have shown that clay layers can adopt bent configurations over nanometer-scale lateral dimensions with minimal effect on mechanical properties. Therefore, in this study we used molecular simulations to evaluate structural properties and water adsorption isotherms for montmorillonite models composed of bent clay layers in mixed hydration states. Results are compared with models consisting of planar clay layers with interstratified hydration states (e.g. 1W–2W). The small degree of bending in these models (up to 1.5 Å of vertical displacement over a 1.3 nm lateral dimension) had little or no effect on bond lengths and angle distributions within the clay layers. Except for models that included dry states, porosities and simulated water adsorption isotherms were nearly identical for bent or flat clay layers with the same averaged layer spacing. Similar agreement was seen with Na- and Ca-exchanged clays. While the small bent models did not retain their configurations during unconstrained molecular dynamics simulation with flexible clay layers, we show that bent structures are stable at much larger length scales by simulating a 41.6×7.1 nm2 system that included dehydrated and hydrated regions in the same interlayer.
Jove-Colon, Carlos F.; Ho, Tuan A.; Lopez, Carlos M.; Rutqvist, Jonny; Guglielmi, Yves; Hu, Mengsu; Sasaki, Tsubasa; Yoon, Sangcheol; Steefel, Carl I.; Tournassat, Christophe; Mital, Utkarsh; Luu, Keurfon; Sauer, Kirsten B.; Caporuscio, Florie A.; Rock, Marlena J.; Zandanel, Amber E.; Zavarin, Mavrik; Wolery, Thomas J.; Chang, Elliot; Han, Sol-Chan; Wainwright, Haruko; Greathouse, Jeffery A.
This report represents the milestone deliverable M2SF-23SN010301072 “Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies” The report provides a status update of FY23 activities for the work package Argillite Disposal work packages for the DOE-NE Spent Fuel Waste Form Science and Technology (SFWST) Program. Clay-rich geological media (often referred as shale or argillite) are among the most abundant type of sedimentary rock near the Earth’s surface. Argillaceous rock formations have the following advantageous attributes for deep geological nuclear waste disposal: widespread geologic occurrence, found in stable geologic settings, low permeability, self-sealing properties, low effective diffusion coefficient, high sorption capacity, and have the appropriate depth and thickness to host nuclear waste repository concepts. The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress (through experiment, modeling, and testing) in the study of chemical and physical phenomena that could impact the long-term safety assessment of heat-generating nuclear waste disposition in clay/shale/argillaceous rock. International collaboration activities comprising field-scale heater tests, field data monitoring, and laboratory-scale experiments provide key information on changes to the engineered barrier system (EBS) material exposed high thermal loads. Moreover, consideration of direct disposal of large capacity dual-purpose canisters (DPCs) as part of the back-end SNF waste disposition strategy has generated interest in improving our understanding of the effects of elevated temperatures on the engineered barrier system (EBS) design concepts. Chemical and structural analyses of sampled bentonite material from laboratory tests at elevated temperatures are key to the characterization of thermal effects affecting bentonite clay barrier performance. The knowledge provided by these experiments is crucial to constrain the extent of sacrificial zones in the EBS design during the thermal period. Thermal, hydrologic, mechanical, and chemical (THMC) data collected from heater tests and laboratory experiments have been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches to assess issues on coupled processes involving porous media flow, transport, geomechanical phenomena, chemical interactions with barrier/geologic materials, and the development of EBS concepts. These lines of knowledge are central to the design of deep geological backfilled repository concepts where temperature plays a key role in the EBS behavior, potential interactions with host rock, and long-term performance in the safety assessment.
Gas intercalation into clay interlayers may result in hydrogen loss in the geological storage of hydrogen; a phenomenon that has not been fully understood and quantified. Here we use metadynamics molecular simulations to calculate the free energy landscape of H2 intercalation into montmorillonite interlayers and the H2 solubility in the confined water; in comparison with results obtained for CO2. The results indicate that H2 intercalation into hydrated interlayers is thermodynamically unfavorable while CO2 intercalation can be favorable. H2 solubility in hydrated clay interlayers is in the same order of magnitude as that in bulk water and therefore no over-solubility effect due to nanoconfinement is observed - in striking contrast with CO2. These results indicate that H2 loss and leakage through hydrated interlayers due to intercalation in a subsurface storage system, if any, is limited.
Polymorphism and phase transitions in sodium diuranate, Na2U2O7, are investigated with density functional perturbation theory (DFPT). Thermal properties of crystalline α-, β- and γ-Na2U2O7 polymorphs are predicted from DFPT phonon calculations, i.e., the first time for the high-temperature γ-Na2U2O7 phase (R3̄m symmetry). The standard molar isochoric heat capacities predicted within the quasi-harmonic approximation are for P21/a α-Na2U2O7 and C2/m β-Na2U2O7, respectively. Gibbs free energy calculations reveal that α-Na2U2O7 (P21/a) and β-Na2U2O7 (C2/m) are almost energetically degenerate at low temperature, with β-Na2U2O7 becoming slightly more stable than α-Na2U2O7 as temperature increases. These findings are consistent with XRD data showing a mixture of α and β phases after cooling of γ-Na2U2O7 to room temperature and the observation of a sluggish α → β phase transition above ca. 600 K. A recently observed α-Na2U2O7 structure with P21 symmetry is also shown to be metastable at low temperature. Based on Gibbs free energy, no direct β → γ solid-solid phase transition is predicted at high temperature, although some experiments reported the existence of such phase transition around 1348 K. This, along with recent experiments, suggests the occurrence of a multi-step process consisting of initial β-phase decomposition, followed by recrystallization into γ-phase as temperature increases.
This report represents the milestone deliverable M4SF-22SN010309092 “Modeling Activities Related to Waste Form Degradation: Progress Report” that describes the progress of R&D activities of ongoing modeling investigations specifically on nuclear waste glass degradation, Density Functional Theory (DFT) studies on clarkeite structure and stability, and electrochemical model development of spent nuclear fuel (SNF). These activities are part of the Waste Form Testing, Modeling, and Performance work package at Sandia National Laboratories (SNL). This work package is part of the “Inventory and Waste Form Characteristics and Performance” control account that includes various experimental and modeling activities on nuclear waste degradation conducted at Oak Ridge National Laboratory (ORNL), SNL, Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL).
The capability of a 1-D PFLOTRAN model to simulate the S1-3 bentonite saturation experiment has been demonstrated and validated against experimental data. Work remains to be done to refine 1-D PFLOTRAN simulations of the experiment S1-4 which include evaluation of parameter sensitivities on the prediction of material saturation and relative permeabilities. This and further testing of PFLOTRAN capabilities will be done as part of DECOVALEX 2023 Task D contributions by the SNL team in the coming months.
Swelling clay hydration/dehydration is important to many environmental and industrial processes. Experimental studies usually probe equilibrium hydration states in an averaged manner and thus cannot capture the fast water transport and structural change in interlayers during hydration/dehydration. Using molecular simulations and thermogravimetric analyses, we observe a two-stage dehydration process. The first stage is controlled by evaporation at the edges: water molecules near hydrophobic sites and the first few water molecules of the hydration shell of cations move fast to particle edges for evaporation. The second stage is controlled by slow desorption of the last 1-2 water molecules from the cations and slow transport through the interlayers. The two-stage dehydration is strongly coupled with interlayer collapse and the coordination number changes of cations, all of which depend on layer charge distribution. This mechanistic interpretation of clay dehydration can be key to the coupled chemomechanical behavior in natural/engineered barriers.
The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heatgenerating nuclear waste disposition in deep-seated clay/shale/argillaceous rock. International collaboration activities such as heater tests, continuous field data monitoring, and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum and discrete) to tackle issues related to flow and transport at various scales of the host-rock, its interactions with barrier materials, and EBS design concept.
We report on progress in developing macroscopic balance equations for combustion and electrochemistry systems. A steady state solution capability is described for the macroscopic reactor network, with an associated steady state continuation method and solution storage capability added in. An example is provided of continuation of a hydrogen flame versus the equivalence ratio. The reactor modeling capability is extended to charged fluid systems, with a description of the new ChargedFluidReactor, SubstrateElement, and MetalCurrentElement reactor classes and novel setup of unknowns within these reactors that preserve charge neutrality. Zuzax's setup for electrochemistry is explained including the specification of the electron chemical potential and the adherence to the SHE Reference electrode specification. The description of the different ways to enter electrochemical reaction rates are described, contrasted, and their derivations with respect to one another are derived. An example of using the ChargedFluidReactor within corrosion problems is provided. We present a description of calculations to understand the phenomena of corrosion of copper from a micron sized droplet of NaCl water droplet, where secondary spreading occurs. An analysis of the discrepancies with experiment is carried out, demonstrating that macroscopic balances can be an important tool for understanding what major factors need to be addressed for a better understanding of a physical system.
This report represents the milestone deliverable M4SF-21SN010309021 “Modeling Activities Related to Waste Form Degradation: Progress Report” that describes the progress of R&D activities of ongoing modeling investigations specifically on nuclear waste glass degradation, Density Functional Theory (DFT) studies on clarkeite structure and stability, and electrochemical modeling of spent nuclear fuel (SNF). These activities are part of the newly-created Waste form Testing, Modeling, and Performance work package at Sandia National Laboratories (SNL). This work package is part of the “Inventory and Waste Form Characteristics and Performance” control account that includes various experimental and modeling activities on nuclear waste degradation conducted at Oak Ridge National Laboratory (ORNL), SNL, Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL).
This interim report is an update of ongoing experimental and modeling work on bentonite material described in Jové Colón et al. (2019, 2020) from past international collaboration activities. As noted in Jové Colón et al. (2020), work on international repository science activities such as FEBEX-DP and DECOVALEX19 is either no longer continuing by the international partners. Nevertheless, research activities on the collected sample materials and field data are still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are described elsewhere (Birkholzer et al. 2019; Jové Colón et al. 2020) but will be explained here when needed. The current reports recent reactive-transport modeling on the leaching of sedimentary rock.
Water flow in nanometer or sub-nanometer hydrophilic channels bears special importance in diverse fields of science and engineering. However, the nature of such water flow remains elusive. Here, we report our molecular-modeling results on water flow in a sub-nanometer clay interlayer between two montmorillonite layers. We show that a fast advective flow can be induced by evaporation at one end of the interlayer channel, that is, a large suction pressure created by evaporation (∼818 MPa) is able to drive the fast water flow through the channel (∼0.88 m/s for a 46 Å-long channel). Scaled up for the pressure gradient to a 2 μm particle, the velocity of water is estimated to be about 95 μm/s, indicating that water can quickly flow through a μm-sized clay particle within seconds. The prediction seems to be confirmed by our thermogravimetric analysis of bentonite hydration and dehydration processes, which indicates that water transport at the early stage of the dehydration is a fast advective process, followed by a slow diffusion process. The possible occurrence of a fast advective water flow in clay interlayers prompts us to reassess water transport in a broad set of natural and engineered systems such as clay swelling/shrinking, moisture transport in soils, water uptake by plants, water imbibition/release in unconventional hydrocarbon reservoirs, and cap rock integrity of supercritical CO2 storage.
Smectite (e.g., Montmorillonite): phyllosilicate minerals found in bentonites. Bentonites have been considered as key backfill barrier materials in deep geological nuclear waste repository concepts. Swelling/shrinking of montmorillonite (MMT) occurs with increasing/decreasing relative humidity. Our research question is, "Microscopically, how does the hydration/dehydration process occur?"
Smectite (e.g., Montmorillonite): phyllosilicate minerals found in bentonites. Bentonites have been considered as key backfill barrier materials in deep geological nuclear waste repository concepts. Swelling/shrinking of montmorillonite (MMT) occurs with increasing/decreasing relative humidity. Microscopically, how does the hydration/dehydration process occur?
Disposal of large, heat-generating waste packages containing the equivalent of 21 pressurized water reactor (PWR) assemblies or more is among the disposal concepts under investigation for a future repository for spent nuclear fuel (SNF) in the United States. Without a long (>200 years) surface storage period, disposal of 21-PWR or larger waste packages (especially if they contain high-burnup fuel) would result in in-drift and near-field temperatures considerably higher than considered in previous generic reference cases that assume either 4-PWR or 12-PWR waste packages (Jové Colón et al. 2014; Mariner et al. 2015; 2017). Sevougian et al. (2019c) identified high-temperature process understanding as a key research and development (R&D) area for the Spent Fuel and Waste Science and Technology (SFWST) Campaign. A two-day workshop in February 2020 brought together campaign scientists with expertise in geology, geochemistry, geomechanics, engineered barriers, waste forms, and corrosion processes to begin integrated development of a high-temperature reference case for disposal of SNF in a mined repository in a shale host rock. Building on the progress made in the workshop, the study team further explored the concepts and processes needed to form the basis for a high-temperature shale repository reference case. The results are described in this report and summarized..