Publications

Publications / Journal Article

Predicting cell-to-cell failure propagation and limits of propagation in lithium-ion cell stacks

Kurzawski, Andrew K.; Torres-Castro, Loraine T.; Shurtz, Randy S.; Lamb, Joshua H.; Hewson, John C.

Thermal runaway of Li-ion batteries is a risk that is magnified when stacks of lithium-ion cells are used for large scale energy storage. When limits of propagation can be identified so that systems can be designed to prevent large scale cascading failure even if a failure does occur, these systems will be safer. The prediction of cell-to-cell failure propagation and the propagation limits in lithium-ion cell stacks were studied to better understand and identify safe designs. A thermal-runaway model was considered based on recent developments in thermochemical source terms. Propagating failure was characterized by temperatures above which calorimetry data is available. Results showed high temperature propagating failure predictions are too rapid unless an intra-particle diffusion limit is included, introducing a Damköhler number limiter into the rate expression. This new model form was evaluated against cell-to-cell failure propagation where the end cell of a stack is forced into thermal runaway through a nail-induced short circuit. Limits of propagation for this configuration are identified. Results showed cell-to-cell propagation predictions are consistent with measurements over a range of cell states of charge and with the introduction of metal plates between cells to add system heat capacity representative of structural members. This consistency extends from scenarios where propagation occurs through scenarios where propagation is prevented.