Publications Details

Publications / Conference

Time-resolved wave-profile measurements at impact velocities of 10 km/s

Chhabildas, Lalit C.

Development of well-controlled hypervelocity launch capabilities is the first step to understand material behavior at extreme pressures and temperatures not available using conventional gun technology. In this paper, techniques used to extend both the launch capabilities of a two-stage light-gas gun to 10 km/s and their use to determine material properties at pressures and temperature states higher than those ever obtained in the laboratory are summarized. Time-resolved interferometric techniques have been used to determine shock loading and release characteristics of materials impacted by titanium and aluminum fliers launched by the only developed three-stage light-gas gun at 10 km/s. In particular, the Sandia three stage light gas gun, also referred to as the hypervelocity launcher, HVL, which is capable of launching 0.5 mm to 1.0 mm thick by 6 mm to 19 mm diameter plates to velocities approaching 16 km/s has been used to obtain the necessary impact velocities. The VISAR, interferometric particle-velocity techniques has been used to determine shock loading and release profiles in aluminum and titanium at impact velocities of 10 km/s.