Publications Details

Publications / SAND Report

Testing Paired Neural Network Models for Aftershock Identification

Emry, Erica L.; Donohoe, Brendan D.; Conley, Andrea C.; Tibi, Rigobert; Young, Christopher J.

Aftershock sequences are a burden to real-time seismic monitoring. Cross-correlation can be used because aftershocks exhibit similar waveforms, but the method is computationally expensive. Deep learning may be an alternative, as it is computationally efficient, but great attention to training and testing is required in order to trust that the model can generalize to new aftershock sequences. This is problematic for aftershock sequences, because large-magnitude earthquakes are unpredictable and are globally widespread. Here, we test several paired neural network (PNN) models trained on a augmented (noise-added) earthquake dataset, to determine whether they can be generalized to process real aftershock sequences. Two aftershock datasets that were originally detected by cross-correlation and subsequently validated by an expert analyst were used. We found that current PNN models struggle to generalize to aftershock sequences. However, we identify approaches to improve training future PNN models and believe that improvements may be achieved by transfer learning.