Publications Details

Publications / Conference

Simulation of stochastic quantum systems using polynomial chaos expansions

Young, Kevin C.; Grace, Matthew G.

We present an approach to the simulation of quantum systems driven by classical stochastic processes that is based on the polynomial chaos expansion, a well-known technique in the field of uncertainty quantification. The polynomial chaos technique represents the density matrix as an expansion in orthogonal polynomials over the principle components of the stochastic process and yields a sparsely coupled hierarchy of linear differential equations. We provide practical heuristics for truncating this expansion based on results from time-dependent perturbation theory and demonstrate, via an experimentally relevant one-qubit numerical example, that our technique can be significantly more computationally efficient than Monte Carlo simulation. © 2013 American Physical Society.