Publications Details
Shock-induced vaporization of zinc. Experiment and numerical simulations
Record-high impact speeds achieved using the Sandia Hyper Velocity Launcher have permitted a systematic study of shock-induced full vaporization of zinc. Pressures up to 5.5 Mbar and temperatures as high as 39000 K (∼3.4 eV) are induced in a thin zinc plate by impacting it with a tantalum flier at speeds up to 10.1 km/s. Such high pressures produce essentially full vaporization of the zinc because the thermodynamic release isentropes pass into the vapor dome near the critical point. To characterize vapor flow, the velocity history produced by stagnation of the zinc expansion products against a witness plate is measured with velocity interferometry. For each experiment, the time-resolved experimental interferometer record is compared with wave-code calculations using an analytical equation of state, called ANEOS, that is known to have performed quite well at lower impact speeds (less than -7 km/s) where vaporization is negligible. Significant discrepancies between experiment and calculation are shown to exist under conditions of the more recent higher impact speeds in excess of 7 km/s where the release isentrope appears to pass near the critical point.