Publications Details

Publications / Conference

Sandia national laboratories' radiation effects testing reactor facilities

Talley, Darren G.; Martin, Lonnie E.; Beets, Raymond D.

Since the 1960's, Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE. Over this time, SNL's Technical Area V (TA-V) has operated research reactor facilities whose primary mission is providing appropriate neutron radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO 2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor (SPR), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The ACRR has a 9-inch inner diameter central cavity, providing a means to expose reasonably large experiments to an epithermal neutron radiation environment. The ACRR also has a 20-inch inner diameter excore cavity surrounded by U-ZrH fuel elements to accommodate larger experiments. The SPR has a 6.5-inch inner diameter cavity, providing a means to expose experiments to neutron radiation environment which approximates a fission spectrum. The SPR is operated in a large reactor room which allows for experiments to be located external to the reactor and irradiated by the neutrons which leak from the reactor. Both the ACRR and the SPR may be operated in a steady-state or pulsed mode. In pulse mode, the ACRR and SPR can attain high-power pulses on the order of 40 GW (10 ms pulse width) and ISO GW (80 μs pulse width), respectively. The ACRR can also be operated in a transient mode, allowing for tailored power profiles ranging from tens to a few hundred MW for durations of a few seconds. The reactors have also been utilized to perform reactor fuel materials testing, reactor accident phenomenology testing, investigation of reactorpumped lasers, and space reactor fuel component testing. Various tests have included effects such as melting and vaporization of materials due to fission heating and have been conducted in environments including molten sodium, hydrogen gas, mechanical shocks greater than 1000 g, and cryogenic temperatures. In addition, TA-V has performed a variety of critical assembly experiments for purposes of gathering reactor physics benchmark data for space reactor fuel, and characterization of fission product reactivity effects for transportation criticality studies. This presentation provides an overview of the various radiation effects testing and critical experiment facilities, their capabilities and radiation environments, and the wide variety of testing for which the facilities have been utilized.