Publications Details

Publications / Other Report

SAF Combustion & Soot Processes [Slides]

Manin, Julien L.

The atomization, mixing, combustion and emissions characteristics of aviation fuels were measured using a novel approach based on a non-continuous injection scheme called the single-hole atomizer (SHA). High-speed microscopy revealed differences between fuels in terms of evaporation and mixing regimes over conditions relevant to modern and next generation aero-engine combustors. Measurements of liquid and vapor penetration, mixing fields, combustion and emissions metrics (ignition delay, lift-off length, PAH formation, soot mass) highlighted the effects of fuels and combustor conditions. The experimental results are being leveraged to adjust and validate chemical and CFD models. Detailed analysis of sampled soot showed subtle differences in soot morphology between fuels. The results revealed the presence of contaminants potentially affecting surface chemistry and the nucleation propensity of water droplets on particles. Chemical mechanisms for NJFCP A-2, C-1 and C-4 showed good performance over a large parameter space. Spray breakup at relight conditions is vastly different from the atomization observed at high pressure. CFD simulations of the SHA target conditions confirmed the good behavior of the C-1 kinetic mechanism. The simulations support the strong relationship between low and high temperature reactions. New altitude chamber facility to enable detailed characterization of the heterogeneous nucleation process of water on aerosol particles.