Publications Details
Organoboron Based Antioxidants
Parada, Corey M.; Corbin, William; Groves, Catherine; Redline, Erica
Earth’s environment can be considered especially harsh due to the cyclic exposure of heat, moisture, oxygen, and ultraviolet (UV) and visible light. Polymer-derived materials subjected to these conditions over time often exhibit symptoms of degradation and deterioration, ultimately leading to accelerated material failure. To combat this, chemical additives known as antioxidants are often used to delay the onset of weathering and oxidative degradation. Phenol-derived antioxidants have been used for decades due to their excellent performance and stability; unfortunately, concerns regarding their toxicity and leaching susceptibility have driven researchers to identify novel solutions to replace phenolic antioxidants. Herein, we report on the antioxidant efficacy of organoborons, which have been known to exhibit antioxidant activity in plants and animals. Four different organoboron molecules were formulated into epoxy materials at various concentrations and subsequently cured into thermoset composites. Their antioxidant performance was subsequently analyzed via thermal, colorimetric, and spectroscopic techniques. Generally, thermal degradation and oxidation studies proved inconclusive and ambiguous. However, aging studies performed under thermal and UV-intensive conditions showed moderate to extreme color changes, suggesting poor antioxidant performance of all organoboron additives. Infrared spectroscopic analysis of the UV aged samples showed evidence of severe material oxidation, while the thermally aged samples showed only slight material oxidation. Solvent extraction experiments showed that even moderately high organoboron concentrations show negligible leaching susceptibility, confirming previously reported results. This finding may have benefits in applications where additive leaching may cause degradation to sensitive materials, such as microelectronics and other materials science related areas.