Publications Details
Multi-Axis Resonant Plate Shock Testing Evaluation and Test Specification Development
Sisemore, Carl; Babuska, Vit B.; Flores, Robert X.
Resonant plate testing is a shock test method that is frequently used to simulate pyroshock events in the laboratory. Recently, it was discovered that if the unit under test is installed at an off-center location, a tri-axial accelerometer would record a shock response in three directions and the resulting shock response spectra implied that the test may have qualified the component in three directions simultaneously. The purpose of this research project was to evaluate this idea of multi-axis shock testing to determine if it was truly a multi-axis shock environment and if such a test could be used as an equivalent component qualification test. A study was conducted using generic, additively manufactured components tested on a resonant plate, along with an investigation of plate motion to evaluate the component response to off- center plate excitation. The data obtained here along with the analytical simulations performed indicate that off-center resonant plate tests are actually not three-axis shock tests, but rather single axis shocks at an arbitrary angle dictated by the location of the unit under test on the plate. This conclusion is supported by the fact that only one vectored shock input is provided to the component in a resonant plate test. Thus, the output response is a coupled response of the transverse plate vibration and the rotational motion of the component on the plate. Additionally, a multi-axis shock test defined by three single axis test environments always results in a significant component over-test in one direction.