Publications Details

Publications / Journal Article

Morphology–Diffusivity Relationships in Fluorine-Free Random Terpolymers for Proton-Exchange Membranes

Win, Max S.; Winey, Karen I.; Frischknecht, Amalie F.

Here, using atomistic molecular dynamics simulations, we investigate the morphology and transport properties of a new family of fluorine-free terpolymers designed as proton-exchange membranes. Simulated random terpolymers consist of three monomers with a 5-carbon backbone with a phenylsulfonate, phenyl, or no pendant group and have ion exchange capacities (IECs) ranging from 1.06–4.14 mmol/g. At a hydration level of 9, cluster analysis reveals macrophase separation between water and terpolymers with IEC < 2.1 mmol/g and continuous, percolated hydrophilic and hydrophobic nanoscale domains at higher IECs. Channel width distribution analysis of the percolated morphologies revealed that more hydrophobic units produce less uniform channels. Decreasing the surface area per sulfonate group and increasing the fractal dimension of the hydrophilic domains correlate with increased water diffusivity, due to a more acidic interface and more isotropic water channels. Relative to the previously studied phenylsulfonate homopolymer, these terpolymers with lower IECs have only modestly lower water diffusion, and we anticipate other advantages related to processability.