Publications Details

Publications / Other Report

Modular Growth and Nucleation Formulations in Modular Plasticity Models

Lester, Brian T.; Scherzinger, William M.

Recent investigations like the second and third Sandia Fracture Challenges have characterized and demonstrated the performance of a variety of failure techniques and models. These surveys have considered a wide breadth of models encapsulating both general failure criteria as well as those focusing on pore nucleation and growth. Extensive reviews exist on both topics. The former category generally consists of classic models like the Johnson-Cook or Wilkins criteria. These models were recently added to modular plasticity models in the Library of Advanced Materials for Engineering (LAME) as criteria for use with element death capabilities. The latter category was not treated in that effort. There exists a large class of failure models based on predicting the evolution of pores and failure associated with such microstructures. While the exact mechanisms and corresponding impact on the macroscale behavior remain an active area of research, a large suite of formulations have been proposed combining different features of both pore nucleation and subsequent growth. The most famous of these are based on the popular Gurson model of pore growth derived via micromechanical analysis assuming a plastically incompressible matrix. Numerous other models exist for both growth and nucleation and the Cocks-Ashby growth and Horstemeyer-Gokhale nucleation models have been used successfully in recent Sandia Fracture Challenges. This specific combination is colloquially referred to as the "BCJ-failure model as it has been frequently used with the Bammann-Chisea-Johnson plasticity model.