Publications Details
Maximizing the Radar Generalized Image Quality Equation for Bistatic SAR Using Waveform Frequency Agility
Summerfield, John R.; Harcke, Leif J.; Conder, Brandon M.; Kasilingam, Dayalan
The radar generalized image quality equation (RGIQE) is a metric used to measure both monostatic and bistatic synthetic aperture radar (BSAR) image quality, it is a function of signal-to-noise ratio (SNR) and 2-D bandwidth. The 2-D bandwidth is equal to the area of the transfer function's (TF) passband region. With the exception of side-looking monostatic geometries, almost all monostatic and bistatic geometries have skewed passband shapes when waveform frequency parameters remain unchanged from pulse to pulse. Most synthetic aperture radar (SAR) applications require a rectangular-shaped passband region, this is achieved by inscribing a rectangular region within the skewed intrinsic passband region. Increasing skewness results in less inscription area reducing 2-D bandwidth, image SNR, and thus RGIQE capacity. In this article, a waveform with frequency agility is used to rectify the skewness that degrades RGIQE capacity. By changing the waveform's center frequency and instantaneous bandwidth from pulse to pulse in a particular manner, the intrinsic passband region can be de-skewed. The de-skewed shape maximizes the inscription area thus maximizing 2-D bandwidth, image SNR, and RGIQE capacity. Three examples are given in this article, one monostatic geometry, and two bistatic geometries. RGIQE capacity is increased by 52.02%, 44.42%, and 79.09% for the three examples.