Publications Details
Magnetically-excited flexural plate wave resonator
A flexural plate wave (FPW) resonator was constructed by patterning current lines on a silicon nitride membrane suspended on a rectangular silicon frame. Eigenmodes of the rectangular membrane were excited using Lorentz forces generated between alternating surface currents and a static in-plane magnetic field. The magnetic field strength required for these devices can be achieved with small permanent magnets ({approx} 1 cm{sup 3}). Preferential coupling to a particular membrane mode was achieved by positioning current lines along longitudinal mode antinodes. An equivalent-circuit model was derived that characterizes the input impedance of a one-port device and the transmission response of a two-port device over a range of frequencies near a single membrane resonance. Experiments were performed to characterize the effects of varying magnetic field, ambient gas, gas pressure, and input power. To the authors` knowledge, this is the first experimental demonstration of a resonant FPW device.