Publications Details
Information-Theoretically Secure Distributed Machine Learning
Shead, Timothy M.; Berry, Jonathan W.; Phillips, Cynthia A.; Saia, Jared
A previously obscure area of cryptography known as Secure Multiparty Computation (MPC) is enjoying increased attention in the field of privacy-preserving machine learning (ML), because ML models implemented using MPC can be uniquely resistant to capture or reverse engineering by an adversary. In particular, an adversary who captures a share of a distributed MPC model provably cannot recover the model itself, nor data evaluated by the model, even by observing the model in operation. We report on our small project to survey current MPC software and judge its practicality for fielding mission-relevant distributed machine learning models.