Publications Details

Publications / SAND Report

How Dynamic Time Warping Can Assist Conventional Cross-correlation

Ramos, Marlon; Tibi, Rigobert; Young, Christopher J.; Emry, Erica L.; Conley, Andrea C.

Waveform cross-correlation is a sensitive phase-matched filtering technique that can detect seismic events for nuclear explosion monitoring. However, there are outstanding challenges with correlation detectors, most notably a direct dependence on the completeness of the waveform template library. To ameliorate these challenges, we investigate how dynamic time warping (DTW) may make waveform correlation more robust. DTW analyzes the differences between two time series and attempts to “warp” one time series relative to another in a recursive manner. We apply DTW to synthetic earthquake and recorded explosion templates to expand the capability of correlation detectors. We explore what conditions (e.g., source, station distance, frequency bands) and/or DTW algorithms generate stronger correlation scores. We show that DTW performs well on noisy signals and can dramatically improve the cross-correlation coefficient between a template and data-stream waveform. We conclude with recommendations on how to utilize DTW in nuclear monitoring detection.