Publications Details
Explosively-driven magnetohydrodynamic generator: Phase II
Phase II work for this Laboratory Directed Research and Development project is presented. Historically, high velocity, solid, electrically conducting armatures or projectiles have been utilized to generate or magnify existing electric fields in magnetohydrodynamic (MHD) devices. Useful power can be extracted from high velocity ionized, electrically conductive plasma jets. The MHD device current output can be switched to power other devices. The purpose of this project is to investigate the use of an Explosively-Driven Ionized Plasma Jet Generator (EDMG) to more efficiently obtain velocities much higher than can be achieved with solid armatures or projectiles. The armature velocity is one of the more important parameters in the electric field magnification process. The ionized plasma jet is generated by explosively collapsing a gas (neon, argon, xenon, hydrogen) filled cavity and directing the jet through a shocktube or core of an MHD device. Data are presented for two different size and configuration explosive drivers, one explosive (COMP-C4), one gas (argon), different driver pressures (90-200 psia), different shocktube or test section pressures (0.01-11.7 psia), and for two different shocktube inside dimensions. Measured time-of-arrival, current, voltage, resistance, power and energy data are presented for tests conducted. Measured time-of-arrival and plasma flow velocity data are compared to the predicted CTH hydrocode data. CTH code calculations are also presented to compare EDMG performance of various test gases and various explosive liner materials.