Publications Details
Experimental-Analytical Substructuring of a Complicated Jointed Structure Using Nonlinear Modal Models
Roettgen, Daniel R.; Pacini, Benjamin R.; Mayes, R.L.; Schoenherr, Tyler F.
This work extends recent methods to calculate dynamic substructuring predictions of a weakly nonlinear structure using nonlinear pseudo-modal models. In previous works, constitutive joint models (such as the modal Iwan element) were used to capture the nonlinearity of each subcomponent on a mode-by-mode basis. This work uses simpler polynomial stiffness and damping elements to capture nonlinear dynamics from more diverse jointed connections including large continuous interfaces. The proposed method requires that the modes of the system remain distinct and uncoupled in the amplitude range of interest. A windowed sinusoidal loading is used to excite each experimental subcomponent mode in order to identify the nonlinear pseudo-modal models. This allows for a higher modal amplitude to be achieved when fitting these models and extends the applicable amplitude range of this method. Once subcomponent modal models have been experimentally extracted for each mode, the Transmission Simulator method is implemented to assemble the subcomponent models into a nonlinear assembled prediction. Numerical integration methods are used to evaluate this prediction compared to a truth test of the nonlinear assembly.