Publications Details

Publications / Presentation

Examining Overdriven State Predictions via Mach Stem Detonation Interactions Using XHVRB

Tuttle, Leah; Harstad, Eric; Kittell, David E.

Explosives exposed to conditions above the Chapman-Jouget (CJ) state exhibit an overdriven response that is transient. Reactive flow models are often fit to the CJ conditions, and they transition to detonation based on inputs lower than or near CJ, but these models may also be used to predict explosive behavior in the overdriven regime. One scenario that can create a strongly overdriven state is a Mach stem shock interaction. These interactions can drive an already detonating or transitioning explosive to an overdriven state, and they can also cause detonation at the interaction location where the separate shocks may be insufficient to detonate the material. In this study, the reactive flow model XHVRB utilizing a Mie-Grüneisen equation of state (EOS) for the unreacted explosive, and a Sesame table for the reacted products, will be used to examine Mach stem interactions from multi-point detonation schemes in CTH. The effect of the overdriven response driven by PETN-based explosive pellets will be tracked to determine the transient detonation behavior, and the predicted states from the burn model will be compared to previously published data.