Publications Details

Publications / Conference

Effects of processing on the low-voltage performance of cathodoluminescent garnet phosphors

Phillips, Mark L.

Field emission flat panel displays place new demands on the performance of cathodoluminescent phosphors. In particular, such phosphors must be efficient at lower voltages (ca. 100-1000 V), and must withstand higher current densities than are present on cathode ray tube screens. ZnO:Zn has been studied extensively as a low-voltage phosphor, but problems such as poor chromatic saturation and temperature sensitivity of emission remain. In this work the use of terbium-doped garnet phases such as yttrium aluminum garnet (YAG) and gadolinium gallium garnet (GGG) as low voltage green-emitting phosphors is evaluated. Hydrothermal synthesis yields well-faceted YAG grains with particle diameters of less than 1 {mu}m. Cathodoluminescent efficiency at a particular voltage was not affected by synthetic route, though the hydrothermally synthesized material was less susceptible to damage at high power densities. An efficiency of 3.5 lm/W was observed for GGG:Tb at 800 V. Deposition of the phosphors onto conducting screens increased their efficiencies at very low voltages (< 200 V). These materials may be considered alternatives to reduced zinc oxide as green-emitting phosphors.