Publications Details
Continued Development and Advanced Testing of DPC Filler Cements (on FY22 R&D and Demonstration Activities) (Progress Report)
Commercial generation of energy by nuclear power plants in the United States (U.S.) has produced thousands of metric tons of spent nuclear fuel (SNF), the disposal of which is the responsibility of the U.S. Department of Energy (DOE). Utilities typically utilize the practice of storing this SNF in dual-purpose canisters (DPCs). DPCs were designed, licensed, and loaded to meet Nuclear Regulatory Commission (NRC) requirements that preclude the possibility of a criticality event during SNF storage and transport, but were not designed or loaded to preclude the possibility of a criticality event during the regulated post-closure period following disposal, which could be up to 1,000,000 years (Price, 2019). There are several options being investigated that could facilitate the disposal of SNF stored in DPCs in a geologic repository (Hardin et al., 2015; SNL 2020b; SNL 2021b). These include: (1) repackage the SNF into canisters that are designed to prevent criticality during the regulated post-closure period following disposal, but with an increased disposal cost estimated at approximately $\$$20B in United States dollars (USD) (Freeze et al., 2019); (2) analysis of the probability and consequences of criticality from the direct disposal of DPCs during a 1,000,000-year post-closure period in several geologic disposal media (Price, 2019); and (3) filling the void space of a DPC with a material before its disposal that significantly limits the potential for criticality over the post-closure regulatory period. This report further investigates the third option, filling DPC already containing SNF with a material to limit the potential for criticality over the post-closure regulatory period.