Publications Details
Closed loop control techniques for the growth of single crystal turbine components
Analysis of processes used for the production of single crystal turbine components reveals significant shortcomings. Inadequate consideration has been made of the fact the system is cooling dominated and that the amount of cooling tends to increase as the emissive cooling area expands during the process. Experimental evidence suggests that during processing, this increased cooling causes the solidification interface to move away from the baffle and become curved. The motion of the interface results in a decrease in the solidification gradient. The combination of these actions can result in variations in PDAS (primary dendrite arm spacing), grain misalignment and the production of defects. It is shown that despite this tendency, microstructural stabilization may be achieved through the use of the heat of fusion as an internal process heat source.