Publications Details
Characterization of Lab-Grown Cracks for Aerosol Transmission Testing
Motivation: Determine the length and opening of two lab-grown cracks, designated as LT-14 and LT-28, representative of stress corrosion cracks in spent nuclear fuel dry storage casks to supplement future testing of gas and aerosol transport. Problem: The extreme aspect ratio of the crack length to opening requires that imaging occurs in stages with the results merged before final analysis. Method: High magnification (1500x) optical images of both sides of the two plates were acquired. 20x stitched images with LSCM were acquired, fully stitched along the length, and leveled with newly developed PLATES Method in MATLAB®. Conclusion for LT-14: Side 1 is 47.25 mm long and has 366 separate crack features with an average length of 23.50 µm and an average opening of 8.27 µm. Side 2 is 69.44 mm long and has 550 separate crack features with an average length of 81.63 µm and an average opening of 67.70 µm. Conclusion for LT-28: Side 1 is 71.95 mm long and has 1,127 separate crack features with an average length of 42.27 µm and an average opening of 10.31 µm. Side 2 is 74.88 mm long and has 520 separate crack features with an average length of 98.13 µm and an average opening of 14.99 µm. The adjacent crack on side 1 is 18.95 mm long and has 37 separate crack features with an average length of 17.46 µm and an average opening of 10.42 µm. The adjacent crack on side 2 is 26.40 mm long and has 55 separate crack features with an average length of 87.26 µm and an average opening of 48.29 µm. Each adjacent crack is approximately 26 mm from the main crack.