Publications Details

Publications / Journal Article

Applications of Autonomous Data Collection and Active Learning

Polonsky, Andrew P.; Callahan, Patrick G.

Advances in sensors and robotics have dramatically improved the diversity of experimental approaches available to the materials community. Autonomous data collection platforms, either custom-made or commercially available, provide researchers with novel tools with which to probe materials behavior and perform advanced materials characterization. The application of novel control algorithms and active learning approaches can create much more robust experimental data, or can be used to improve the performance of existing characterization tools. Five papers within this special topic focus on experimental and computational methodologies for use in automatic data collection routines for materials characterization. From novel platforms for materials discovery to new statistical frameworks for assessing the autonomous experimentation process, these five papers highlight the diverse range of applications of automation for advancing materials science.