Publications Details

Publications / Conference

Adaptive remote-sensing techniques implementing swarms of mobile agents

Cameron, Stewart M.

Measurement and signal intelligence (MASINT) of the battlespace has created new requirements in information management, communication and interoperability as they effect surveillance and situational awareness. In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical and difficult to characterize. An alternative approach is to implement adaptive remote-sensing techniques with swarms of mobile agents employing collective behavior for optimization of mapping signatures and positional orientation (registration). We have expanded intelligent control theory using physics-based collective behavior models and genetic algorithms to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and inter-operative global optimization for sensor fusion and mission oversight. By using a layered hierarchical control architecture to orchestrate adaptive reconfiguration of semi-autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecking. In our concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelligence opens up a new class of remote sensing applications in which small single-function autonomous observers at the local level can collectively optimize and measure large scale ground-level signatures. As the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of this type is being developed which will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures, which are nonstationary or obscured by clutter or interfering obstacles by virtue of adaptive reconfiguration. This methodology is being used to field an adaptive ground-penetrating impulse radar from a superposition of small radiating dipoles for detection of underground structures and to detect/remediate hazardous biological or chemical species in migrating plumes.