Publications Details

Publications / Conference

A test vehicle to assess stress voiding models and acceleration methods

Filter, William F.

We have designed and manufactured a test chip devoted to the study of interconnect voiding. The test chip is suitable for evaluating theoretical models, acceleration recipes, and the effects of process variations. We describe the chip and a simple, stress-free packaging technique that eliminates any stress to the chip from die bonding or packaging thermal cycles. With this test chip, we can perform many necessary and desirable experiments: determining stress, observing or stimulating void growth, profiling hydrogen concentrations, and measuring excess current noise. We report here preliminary measurements of residual stress, observations of voids, and determinations of hydrogen concentrations of hydrogen concentration under variations in aluminum annealing and passivation. In agreement with observations elsewhere, we find that passivations which differ greatly in intrinsic stress do not differ much in the stress they impart to patterned metal; some workers have suggested instead that excess hydrogen in the aluminum contributes to voiding. Following this lead, we have used nuclear reaction analysis to profile the hydrogen concentration in passivation, metallization, barrier metal, and interlevel dielectric and present some preliminary measurements here. We conclude that passivated metallization may contain as much as 0.1 atomic % hydrogen. 10 refs.