Publications Details

Publications / Conference

A hybrid-hybrid solver for manycore platforms

Rajamanickam, Sivasankaran R.; Boman, Erik G.; Heroux, Michael A.

With the increasing levels of parallelism in a compute node, it is important to exploit multiple levels of parallelism even within a single compute node. We present ShyLU (pro- nounced\Shy-loo"for Scalable Hybrid LU), a\hybrid-hybrid" solver for general sparse linear systems that is hybrid in two ways: First, it combines direct and iterative methods. The iterative method is based on approximate Schur com- plements. Second, the solver uses two levels of parallelism via hybrid programming (MPI+threads). Our solver is use- ful both in shared-memory environments and on large par- allel computers with distributed memory (as a subdomain solver). We compare the robustness of ShyLU against other algebraic preconditioners. ShyLU scales well up to 192 cores for a given problem size. We compare at MPI performance of ShyLU against a hybrid implementation. We conclude that on present multicore nodes at MPI is better. However, for future manycore machines (48 or more cores) hybrid/ hi- erarchical algorithms and implementations are important for sustained performance. Copyright is held by the author/owner(s).