Power Electronics

Power electronics is the application of solid-state electronics for routing, control, and conversion of electrical power.

Custom Solutions

Wide-Bandgap

Image of wbg

Wide-bandgap semiconductor materials such as silicon carbide (SiC) and gallium nitride (GaN) have the potential to revolutionize the field of power electronics. Sandia National Laboratories is well-suited to understand both performance and reliability in wide-bandgap power electronics.

Ultra Wide-Bandgap

The term “power electronics” is commonly used to refer to both the specialized power semiconductor devices and the circuits they comprise. Improving the Size, Weight, and Power (SWaP) of such devices, especially in harsh environments unique to Sandia’s mission space, has been identified as a critical strategic need.

Recent and rapid progress in wide-bandgap (WBG) power electronics (PE) based on SiC and GaN semiconductor materials has attracted significant attention and helped to spur Sandia’s interest. Despite these recent developments, the WBG PE industry is unable to create devices that fulfill Sandia’s unique mission requirements for performance and reliability in radiation environments. .

Sandia aims to leapfrog the current industry trajectory by developing a new generation of power electronics based on Ultra-WBG (UWBG) semiconductors (those with bandgaps greater than 3.4 eV), including high-Al-content aluminum gallium nitride (AlGaN), and by laying the foundation for predictive reliability and radiation hardness of these devices in environments required by Sandia mission areas.

Image of PE

Power Electronics Reliability

In order to facilitate the adoption of future energy technologies such as the smart grid, a fundamental shift in power electronics is needed to increase efficiency while simultaneously decreasing system size, power, and weight. Additionally, to reduce systems costs over the 20+ year lifetime applications require, these power electronics devices must be highly reliable. Sandia focuses on performance and reliability of power electronics components through the study of novel wide and ultra wide bandgap technologies, as well as energy conversion systems such as photovoltaic inverter systems.

R&D

For more information about Research and Development in this area please visit Nanodevices and Microsystems.

Fact Sheets, Publications, References, Animations, Licensing IP Opportunities

Energy Storage – Power Electronics

Image of Energy_PE

Energy PV Performance and Modeling

Image of Energy_PV

Power Electronics Publications