Publications

Results 7551–7600 of 9,998

Search results

Jump to search filters

Hierarchical resilience with lightweight threads

Wheeler, Kyle B.

This paper proposes methodology for providing robustness and resilience for a highly threaded distributed- and shared-memory environment based on well-defined inputs and outputs to lightweight tasks. These inputs and outputs form a failure 'barrier', allowing tasks to be restarted or duplicated as necessary. These barriers must be expanded based on task behavior, such as communication between tasks, but do not prohibit any given behavior. One of the trends in high-performance computing codes seems to be a trend toward self-contained functions that mimic functional programming. Software designers are trending toward a model of software design where their core functions are specified in side-effect free or low-side-effect ways, wherein the inputs and outputs of the functions are well-defined. This provides the ability to copy the inputs to wherever they need to be - whether that's the other side of the PCI bus or the other side of the network - do work on that input using local memory, and then copy the outputs back (as needed). This design pattern is popular among new distributed threading environment designs. Such designs include the Barcelona STARS system, distributed OpenMP systems, the Habanero-C and Habanero-Java systems from Vivek Sarkar at Rice University, the HPX/ParalleX model from LSU, as well as our own Scalable Parallel Runtime effort (SPR) and the Trilinos stateless kernels. This design pattern is also shared by CUDA and several OpenMP extensions for GPU-type accelerators (e.g. the PGI OpenMP extensions).

More Details

Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution

Schultz, Peter A.

This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

More Details

Robust automated knowledge capture

Trumbo, Michael C.; Haass, Michael J.; Adams, Susan S.; Hendrickson, Stacey M.; Abbott, Robert G.

This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

More Details

Using triggered operations to offload rendezvous messages

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Barrett, Brian B.; Brightwell, Ronald B.; Hemmert, Karl S.; Wheeler, Kyle B.; Underwood, Keith D.

Historically, MPI implementations have had to choose between eager messaging protocols that require buffering and rendezvous protocols that sacrifice overlap and strong independent progress in some scenarios. The typical choice is to use an eager protocol for short messages and switch to a rendezvous protocol for long messages. If overlap and progress are desired, some implementations offer the option of using a thread. We propose an approach that leverages triggered operations to implement a long message rendezvous protocol that provides strong progress guarantees. The results indicate that a triggered operation based rendezvous can achieve better overlap than a traditional rendezvous implementation and less wasted bandwidth than an eager long protocol. © 2011 Springer-Verlag Berlin Heidelberg.

More Details

Libhashckpt: Hash-based incremental checkpointing using GPU's

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Ferreira, Kurt; Riesen, Rolf; Brightwell, Ronald B.; Bridges, Patrick; Arnold, Dorian

Concern is beginning to grow in the high-performance computing (HPC) community regarding the reliability guarantees of future large-scale systems. Disk-based coordinated checkpoint/restart has been the dominant fault tolerance mechanism in HPC systems for the last 30 years. Checkpoint performance is so fundamental to scalability that nearly all capability applications have custom checkpoint strategies to minimize state and reduce checkpoint time. One well-known optimization to traditional checkpoint/restart is incremental checkpointing, which has a number of known limitations. To address these limitations, we introduce libhashckpt; a hybrid incremental checkpointing solution that uses both page protection and hashing on GPUs to determine changes in application data with very low overhead. Using real capability workloads, we show the merit of this technique for a certain class of HPC applications. © 2011 Springer-Verlag Berlin Heidelberg.

More Details

Statistical mechanical foundation of the peridynamic nonlocal continuum theory: Energy and momentum conservation laws

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Lehoucq, Richard B.; Sears, Mark P.

The purpose of this paper is to derive the energy and momentum conservation laws of the peridynamic nonlocal continuum theory using the principles of classical statistical mechanics. The peridynamic laws allow the consideration of discontinuous motion, or deformation, by relying on integral operators. These operators sum forces and power expenditures separated by a finite distance and so represent nonlocal interaction. The integral operators replace the differential divergence operators conventionally used, thereby obviating special treatment at points of discontinuity. The derivation presented employs a general multibody interatomic potential, avoiding the standard assumption of a pairwise decomposition. The integral operators are also expressed in terms of a stress tensor and heat flux vector under the assumption that these fields are differentiable, demonstrating that the classical continuum energy and momentum conservation laws are consequences of the more general peridynamic laws. An important conclusion is that nonlocal interaction is intrinsic to continuum conservation laws when derived using the principles of statistical mechanics. © 2011 American Physical Society.

More Details

Backfilling with guarantees granted upon job submission

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Lindsay, Alexander M.; Galloway-Carson, Maxwell; Johnson, Christopher R.; Bunde, David P.; Leung, Vitus J.

In this paper, we present scheduling algorithms that simultaneously support guaranteed starting times and favor jobs with system-desired traits. To achieve the first of these goals, our algorithms keep a profile with potential starting times for every unfinished job and never move these starting times later, just as in Conservative Backfilling. To achieve the second, they exploit previously unrecognized flexibility in the handling of holes opened in this profile when jobs finish early. We find that, with one choice of job selection function, our algorithms can consistently yield a lower average waiting time than Conservative Backfilling while still providing a guaranteed start time to each job as it arrives. In fact, in most cases, the algorithms give a lower average waiting time than the more aggressive EASY backfilling algorithm, which does not provide guaranteed start times. Alternately, with a different choice of job selection function, our algorithms can focus the benefit on the widest submitted jobs, the reason for the existence of parallel systems. In this case, these jobs experience significantly lower waiting time than Conservative Backfilling with minimal impact on other jobs. © 2011 Springer-Verlag.

More Details

MapReduce in MPI for Large-scale graph algorithms

Parallel Computing

Plimpton, Steven J.; Devine, Karen D.

We describe a parallel library written with message-passing (MPI) calls that allows algorithms to be expressed in the MapReduce paradigm. This means the calling program does not need to include explicit parallel code, but instead provides "map" and "reduce" functions that operate independently on elements of a data set distributed across processors. The library performs needed data movement between processors. We describe how typical MapReduce functionality can be implemented in an MPI context, and also in an out-of-core manner for data sets that do not fit within the aggregate memory of a parallel machine. Our motivation for creating this library was to enable graph algorithms to be written as MapReduce operations, allowing processing of terabyte-scale data sets on traditional MPI-based clusters. We outline MapReduce versions of several such algorithms: vertex ranking via PageRank, triangle finding, connected component identification, Luby's algorithm for maximally independent sets, and single-source shortest-path calculation. To test the algorithms on arbitrarily large artificial graphs we generate randomized R-MAT matrices in parallel; a MapReduce version of this operation is also described. Performance and scalability results for the various algorithms are presented for varying size graphs on a distributed-memory cluster. For some cases, we compare the results with non-MapReduce algorithms, different machines, and different MapReduce software, namely Hadoop. Our open-source library is written in C++, is callable from C++, C, Fortran, or scripting languages such as Python, and can run on any parallel platform that supports MPI. © 2011 Elsevier B.V. All rights reserved.

More Details

Computational thermal, chemical, fluid, and solid mechanics for geosystems management

Martinez, Mario J.; Red-Horse, John R.; Carnes, Brian C.; Mesh, Mikhail M.; Field, Richard V.; Davison, Scott M.; Yoon, Hongkyu Y.; Bishop, Joseph E.; Newell, Pania N.; Notz, Patrick N.; Turner, Daniel Z.; Subia, Samuel R.; Hopkins, Polly L.; Moffat, Harry K.; Jove Colon, Carlos F.; Dewers, Thomas D.; Klise, Katherine A.

This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

More Details

Accelerated molecular dynamics and equation-free methods for simulating diffusion in solids

Wagner, Gregory J.; Deng, Jie D.; Erickson, Lindsay C.; Plimpton, Steven J.; Thompson, Aidan P.; Zhou, Xiaowang Z.; Zimmerman, Jonathan A.

Many of the most important and hardest-to-solve problems related to the synthesis, performance, and aging of materials involve diffusion through the material or along surfaces and interfaces. These diffusion processes are driven by motions at the atomic scale, but traditional atomistic simulation methods such as molecular dynamics are limited to very short timescales on the order of the atomic vibration period (less than a picosecond), while macroscale diffusion takes place over timescales many orders of magnitude larger. We have completed an LDRD project with the goal of developing and implementing new simulation tools to overcome this timescale problem. In particular, we have focused on two main classes of methods: accelerated molecular dynamics methods that seek to extend the timescale attainable in atomistic simulations, and so-called 'equation-free' methods that combine a fine scale atomistic description of a system with a slower, coarse scale description in order to project the system forward over long times.

More Details

A design for a V&V and UQ discovery process

Knupp, Patrick K.; Urbina, Angel U.

There is currently sparse literature on how to implement systematic and comprehensive processes for modern V&V/UQ (VU) within large computational simulation projects. Important design requirements have been identified in order to construct a viable 'system' of processes. Significant processes that are needed include discovery, accumulation, and assessment. A preliminary design is presented for a VU Discovery process that accounts for an important subset of the requirements. The design uses a hierarchical approach to set context and a series of place-holders that identify the evidence and artifacts that need to be created in order to tell the VU story and to perform assessments. The hierarchy incorporates VU elements from a Predictive Capability Maturity Model and uses questionnaires to define critical issues in VU. The place-holders organize VU data within a central repository that serves as the official VU record of the project. A review process ensures that those who will contribute to the record have agreed to provide the evidence identified by the Discovery process. VU expertise is an essential part of this process and ensures that the roadmap provided by the Discovery process is adequate. Both the requirements and the design were developed to support the Nuclear Energy Advanced Modeling and Simulation Waste project, which is developing a set of advanced codes for simulating the performance of nuclear waste storage sites. The Waste project served as an example to keep the design of the VU Discovery process grounded in practicalities. However, the system is represented abstractly so that it can be applied to other M&S projects.

More Details

A toolbox for a class of discontinuous Petrov-Galerkin methods using trilinos

Ridzal, Denis R.; Bochev, Pavel B.

The class of discontinuous Petrov-Galerkin finite element methods (DPG) proposed by L. Demkowicz and J. Gopalakrishnan guarantees the optimality of the solution in an energy norm and produces a symmetric positive definite stiffness matrix, among other desirable properties. In this paper, we describe a toolbox, implemented atop Sandia's Trilinos library, for rapid development of solvers for DPG methods. We use this toolbox to develop solvers for the Poisson and Stokes problems.

More Details
Results 7551–7600 of 9,998
Results 7551–7600 of 9,998