Publications

Results 301–325 of 395

Search results

Jump to search filters

Exploratory trajectory clustering with distance geometry

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Wilson, Andrew T.; Laros, James H.; Valicka, Christopher G.

We present here an example of how a large,multi-dimensional unstructured data set, namely aircraft trajectories over the United States, can be analyzed using relatively straightforward unsupervised learning techniques. We begin by adding a rough structure to the trajectory data using the notion of distance geometry. This provides a very generic structure to the data that allows it to be indexed as an n-dimensional vector. We then do a clustering based on the HDBSCAN algorithm to both group flights with similar shapes and find outliers that have a relatively unique shape. Next, we expand the notion of geometric features to more specialized features and demonstrate the power of these features to solve specific problems. Finally, we highlight not just the power of the technique but also the speed and simplicity of the implementation by demonstrating them on very large data sets.

More Details

Time series discord detection in medical data using a parallel relational database

Proceedings - 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015

Woodbridge, Diane W.; Wilson, Andrew T.; Laros, James H.; Goldstein, Richard H.

Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients' emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithms on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.

More Details

Early experiences with node-level power capping on the cray XC40 platform

Proceedings of E2SC 2015: 3rd International Workshop on Energy Efficient Supercomputing - Held in conjunction with SC 2015: The International Conference for High Performance Computing, Networking, Storage and Analysis

Laros, James H.; Olivier, Stephen L.; Ferreira, Kurt B.; Shipman, Galen; Shu, Wei

Power consumption of extreme-scale supercomputers has become a key performance bottleneck. Yet current practices do not leverage power management opportunities, instead running at maximum power. This is not sustainable. Future systems will need to manage power as a critical resource, directing it to where it has greatest benefit. Power capping is one mechanism for managing power budgets, however its behavior is not well understood. This paper presents an empirical evaluation of several key HPC workloads running under a power cap on a Cray XC40 system, and provides a comparison of this technique with p-state control, demonstrating the performance differences of each. These results show: 1.) Maximum performance requires ensuring the cap is not reached; 2.) Performance slowdown under a cap can be attributed to cascading delays which result in unsynchronized performance variability across nodes; and, 3.) Due to lag in reaction time, considerable time is spent operating above the set cap. This work provides a timely and much needed comparison of HPC application performance under a power cap and attempts to enable users and system administrators to understand how to best optimize application performance on power-constrained HPC systems.

More Details

Trajectory analysis via a geometric feature space approach

Statistical Analysis and Data Mining

Laros, James H.; Wilson, Andrew T.

This study aimed to organize a body of trajectories in order to identify, search for and classify both common and uncommon behaviors among objects such as aircraft and ships. Existing comparison functions such as the Fréchet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as the total distance traveled and the distance between start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to behaviors of interest to humans who are searching large databases. Most of these geometric features are invariant under rigid transformation. Furthermore, we demonstrate the use of different subsets of these features to identify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories and identify outliers.

More Details

Trajectory analysis via a geometric feature space approach

Statistical Analysis and Data Mining

Laros, James H.; Wilson, Andrew T.

This study aimed to organize a body of trajectories in order to identify, search for and classify both common and uncommon behaviors among objects such as aircraft and ships. Existing comparison functions such as the Fréchet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as the total distance traveled and the distance between start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to behaviors of interest to humans who are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to identify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories and identify outliers.

More Details

Time Series Discord Detection in Medical Data using a Parallel Relational Database

Woodbridge, Diane W.; Laros, James H.; Wilson, Andrew T.; Goldstein, Richard

Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithms on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.

More Details

PANTHER. Trajectory Analysis

Laros, James H.; Wilson, Andrew T.; Valicka, Christopher G.; Kegelmeyer, William P.; Shead, Timothy M.; Czuchlewski, Kristina R.; Newton, Benjamin D.

We want to organize a body of trajectories in order to identify, search for, classify and predict behavior among objects such as aircraft and ships. Existing compari- son functions such as the Fr'echet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as total distance traveled and distance be- tween start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to behaviors of interest to humans that are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to iden- tify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories, predict destination and apply unsupervised machine learning algorithms.

More Details

High Performance Computing - Power Application Programming Interface Specification

Laros, James H.; Kelly, Suzanne M.; Laros, James H.; Grant, Ryan E.; Olivier, Stephen L.; Levenhagen, Michael J.; DeBonis, David D.

Achieving practical exascale supercomputing will require massive increases in energy efficiency. The bulk of this improvement will likely be derived from hardware advances such as improved semiconductor device technologies and tighter integration, hopefully resulting in more energy efficient computer architectures. Still, software will have an important role to play. With every generation of new hardware, more power measurement and control capabilities are exposed. Many of these features require software involvement to maximize feature benefits. This trend will allow algorithm designers to add power and energy efficiency to their optimization criteria. Similarly, at the system level, opportunities now exist for energy-aware scheduling to meet external utility constraints such as time of day cost charging and power ramp rate limitations. Finally, future architectures might not be able to operate all components at full capability for a range of reasons including temperature considerations or power delivery limitations. Software will need to make appropriate choices about how to allocate the available power budget given many, sometimes conflicting considerations.

More Details
Results 301–325 of 395
Results 301–325 of 395