Publications

Results 1–25 of 41
Skip to search filters

Multimode Metastructures: Novel Hybrid 3D Lattice Topologies

Boyce, Brad B.; Garland, Anthony G.; White, Benjamin C.; Jared, Bradley H.; Conway, Kaitlynn C.; Adstedt, Katerina A.; Dingreville, Remi P.; Robbins, Joshua R.; Walsh, Timothy W.; Alvis, Timothy A.; Branch, Brittany A.; Kaehr, Bryan J.; Kunka, Cody; Leathe, Nicholas L.

With the rapid proliferation of additive manufacturing and 3D printing technologies, architected cellular solids including truss-like 3D lattice topologies offer the opportunity to program the effective material response through topological design at the mesoscale. The present report summarizes several of the key findings from a 3-year Laboratory Directed Research and Development Program. The program set out to explore novel lattice topologies that can be designed to control, redirect, or dissipate energy from one or multiple insult environments relevant to Sandia missions, including crush, shock/impact, vibration, thermal, etc. In the first 4 sections, we document four novel lattice topologies stemming from this study: coulombic lattices, multi-morphology lattices, interpenetrating lattices, and pore-modified gyroid cellular solids, each with unique properties that had not been achieved by existing cellular/lattice metamaterials. The fifth section explores how unintentional lattice imperfections stemming from the manufacturing process, primarily sur face roughness in the case of laser powder bed fusion, serve to cause stochastic response but that in some cases such as elastic response the stochastic behavior is homogenized through the adoption of lattices. In the sixth section we explore a novel neural network screening process that allows such stocastic variability to be predicted. In the last three sections, we explore considerations of computational design of lattices. Specifically, in section 7 using a novel generative optimization scheme to design novel pareto-optimal lattices for multi-objective environments. In section 8, we use computational design to optimize a metallic lattice structure to absorb impact energy for a 1000 ft/s impact. And in section 9, we develop a modified micromorphic continuum model to solve wave propagation problems in lattices efficiently.

More Details

Automated high-throughput tensile testing reveals stochastic process parameter sensitivity

Materials Science and Engineering: A

Heckman, Nathan H.; Ivanoff, Thomas I.; Roach, Ashley M.; Jared, Bradley H.; Tung, Daniel J.; Brown-Shaklee, Harlan J.; Huber, Todd H.; Saiz, David J.; Koepke, Joshua R.; Rodelas, Jeffrey R.; Madison, Jonathan D.; Salzbrenner, Bradley S.; Swiler, Laura P.; Jones, Reese E.; Boyce, Brad B.

The mechanical properties of additively manufactured metals tend to show high variability, due largely to the stochastic nature of defect formation during the printing process. This study seeks to understand how automated high throughput testing can be utilized to understand the variable nature of additively manufactured metals at different print conditions, and to allow for statistically meaningful analysis. This is demonstrated by analyzing how different processing parameters, including laser power, scan velocity, and scan pattern, influence the tensile behavior of additively manufactured stainless steel 316L utilizing a newly developed automated test methodology. Microstructural characterization through computed tomography and electron backscatter diffraction is used to understand some of the observed trends in mechanical behavior. Specifically, grain size and morphology are shown to depend on processing parameters and influence the observed mechanical behavior. In the current study, laser-powder bed fusion, also known as selective laser melting or direct metal laser sintering, is shown to produce 316L over a wide processing range without substantial detrimental effect on the tensile properties. Ultimate tensile strengths above 600 MPa, which are greater than that for typical wrought annealed 316L with similar grain sizes, and elongations to failure greater than 40% were observed. It is demonstrated that this process has little sensitivity to minor intentional or unintentional variations in laser velocity and power.

More Details

New nanoscale toughening mechanisms mitigate embrittlement in binary nanocrystalline alloys

Nanoscale

Heckman, Nathan H.; Foiles, Stephen M.; O'Brien, Christopher J.; Chandross, M.; Barr, Christopher M.; Argibay, Nicolas A.; Hattar, Khalid M.; Lu, Ping L.; Adams, David P.; Boyce, Brad B.

Nanocrystalline metals offer significant improvements in structural performance over conventional alloys. However, their performance is limited by grain boundary instability and limited ductility. Solute segregation has been proposed as a stabilization mechanism, however the solute atoms can embrittle grain boundaries and further degrade the toughness. In the present study, we confirm the embrittling effect of solute segregation in Pt-Au alloys. However, more importantly, we show that inhomogeneous chemical segregation to the grain boundary can lead to a new toughening mechanism termed compositional crack arrest. Energy dissipation is facilitated by the formation of nanocrack networks formed when cracks arrested at regions of the grain boundaries that were starved in the embrittling element. This mechanism, in concert with triple junction crack arrest, provides pathways to optimize both thermal stability and energy dissipation. A combination of in situ tensile deformation experiments and molecular dynamics simulations elucidate both the embrittling and toughening processes that can occur as a function of solute content.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, R.A.; Argibay, Nicolas A.; Allen, Kyle M.; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad B.; Brown, Judith A.; Burchard, Ross L.; Chandross, M.; Cook, Adam W.; DiAntonio, Christopher D.; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis R.; Ivanoff, Thomas I.; Jared, Bradley H.; Johnson, Kyle J.; Kammler, Daniel K.; Koepke, Joshua R.; Kustas, Andrew K.; Lavin, Judith M.; Leathe, Nicholas L.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal S.; Martinez, Mario J.; Moser, Daniel M.; Rodgers, Theron R.; Seidl, Daniel T.; Brown-Shaklee, Harlan J.; Stanford, Joshua S.; Stender, Michael S.; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha T.; Trembacki, Bradley T.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, R.A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David M.; Cook, Adam W.; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua S.; Boyce, Brad B.; Johnson, Kyle J.; Rodgers, Theron R.; Ford, Kurtis R.; Martinez, Mario J.; Moser, Daniel M.; van Bloemen Waanders, Bart G.; Chandross, M.; Abdeljawad, Fadi F.; Allen, Kyle M.; Stender, Michael S.; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas A.; Brown-Shaklee, Harlan J.; Kustas, Andrew K.; Sugar, Joshua D.; Kammler, Daniel K.; Wilson, Mark A.

Abstract not provided.

Extreme-Value Statistics Reveal Rare Failure-Critical Defects in Additive Manufacturing

Advanced Engineering Materials

Boyce, Brad B.; Salzbrenner, Bradley S.; Rodelas, Jeffrey R.; Swiler, Laura P.; Madison, Jonathan D.; Jared, Bradley H.; Shen, Yu L.

Additive manufacturing enables the rapid, cost effective production of customized structural components. To fully capitalize on the agility of additive manufacturing, it is necessary to develop complementary high-throughput materials evaluation techniques. In this study, over 1000 nominally identical tensile tests are used to explore the effect of process variability on the mechanical property distributions of a precipitation hardened stainless steel produced by a laser powder bed fusion process, also known as direct metal laser sintering or selective laser melting. With this large dataset, rare defects are revealed that affect only ≈2% of the population, stemming from a single build lot of material. The rare defects cause a substantial loss in ductility and are associated with an interconnected network of porosity. The adoption of streamlined test methods will be paramount to diagnosing and mitigating such dangerous anomalies in future structural components.

More Details

Additive manufacturing: Toward holistic design

Scripta Materialia

Jared, Bradley H.; Aguilo, Miguel A.; Beghini, Lauren L.; Boyce, Brad B.; Clark, Brett W.; Cook, Adam W.; Kaehr, Bryan J.; Robbins, Joshua R.

Additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.

More Details
Results 1–25 of 41
Results 1–25 of 41