Rattlesnake: An Open-Source Multi-Axis and Combined Environments Vibration Controller
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report provides a design study to produce 100% carbon-free electricity for Sandia NM and Kirtland Air Force Base (KAFB) using concentrating solar power (CSP). Annual electricity requirements for both Sandia and KAFB are presented, along with specific load centers that consume a significant and continuous amount of energy. CSP plant designs of 50 MW and 100 MW are then discussed to meet the needs of Sandia NM and the combined electrical needs of both Sandia NM and KAFB. Probabilistic modeling is performed to evaluate inherent uncertainties in performance and cost parameters on total construction costs and the levelized cost of electricity. Total overnight construction costs are expected to range between ~$300M - $400M for the 50 MW CSP plant and between ~$500M - $800M for the 100 MW plant. Annual operations and maintenance (O&M) costs are estimated together with potential offsets in electrical costs and CO2 emissions. Other considerations such as interconnections, land use and permitting, funding options, and potential agreements and partnerships with Public Service Company of New Mexico (PNM), Western Area Power Administration (WAPA), and other entities are also discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A mass property calculator has been developed to compute the moment of inertia properties of an assemblage of parts that make up a system. The calculator can take input from spreadsheets or Creo mass property files or it can be interfaced with Phoenix Integration Model Center. The input must include the centroidal moments of inertia of each part with respect to its local coordinates, the location of the centroid of each part in the system coordinates and the Euler angles needed to rotate from the part coordinates to the system coordinates. The output includes the system total mass, centroid and mass moment of inertia properties. The input/output capabilities allow the calculator to interface with external optimizers. In addition to describing the calculator, this document serves as its user's manual. The up-to-date version of the calculator can be found in the Git repository https://cee-gitlab.sandia.gov/cj?ete/mass-properties-calculator.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.