Developing structure property relationships for metal hydride films
Abstract not provided.
Abstract not provided.
This report describes the methodology, analysis and conclusions of a preliminary assessment carried out for activities and operations at Sandia National Laboratories Building 878, Manufacturing Science and Technology, Organization 14100. The goal of this assessment is to evaluate processes being carried out within the building to determine ways to reduce waste generation and resource use. The ultimate purpose of this assessment is to analyze and prioritize processes within Building 878 for more in-depth assessments and to identify projects that can be implemented immediately.
Abstract not provided.
Proposed for publication in Performance Improvement Quarterly.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Journal of Applied Mechanics.
The Lubkin solution for two spheres pressed together and then subjected to a monotonically increasing axial couple is examined numerically. The Deresiewicz asymptotic solution is compared to the full solution and its utility is evaluated. Alternative approximations for the Lubkin solution are suggested and compared. One approximation is a Pade rational function which matches the analytic solution over all rotations. The other is an exponential approximation that reproduces the asymptotic values of the analytic solution at infinitesimal and infinite rotations. Finally, finite element solutions for the Lubkin problem are compared with the exact and approximate solutions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A trace explosives detection system typically contains three subsystems: sample collection, preconcentration, and detection. Sample collection of trace explosives (vapor and particulate) through large volumes of airflow helps reduce sampling time while increasing the amount of dilute sample collected. Preconcentration of the collected sample before introduction into the detector improves the sensitivity of the detector because of the increase in sample concentration. By combining large-volume sample collection and preconcentration, an improvement in the detection of explosives is possible. Large-volume sampling and preconcentration is presented using a systems level approach. In addition, the engineering of large-volume sampling and preconcentration for the trace detection of explosives is explained.
A two-year effort focused on applying ASCI technology developed for the analysis of weapons systems to the state-of-the-art accident analysis of a nuclear reactor system was proposed. The Sandia SIERRA parallel computing platform for ASCI codes includes high-fidelity thermal, fluids, and structural codes whose coupling through SIERRA can be specifically tailored to the particular problem at hand to analyze complex multiphysics problems. Presently, however, the suite lacks several physics modules unique to the analysis of nuclear reactors. The NRC MELCOR code, not presently part of SIERRA, was developed to analyze severe accidents in present-technology reactor systems. We attempted to: (1) evaluate the SIERRA code suite for its current applicability to the analysis of next generation nuclear reactors, and the feasibility of implementing MELCOR models into the SIERRA suite, (2) examine the possibility of augmenting ASCI codes or alternatives by coupling to the MELCOR code, or portions thereof, to address physics particular to nuclear reactor issues, especially those facing next generation reactor designs, and (3) apply the coupled code set to a demonstration problem involving a nuclear reactor system. We were successful in completing the first two in sufficient detail to determine that an extensive demonstration problem was not feasible at this time. In the future, completion of this research would demonstrate the feasibility of performing high fidelity and rapid analyses of safety and design issues needed to support the development of next generation power reactor systems.