This report documents the calculation of radionuclide content in the pressurized water reactor (PWR) spent fuel samples planned for use in the Spent Fuel Ratio (SPR) Experiments at Sandia National Laboratories, Albuquerque, New Mexico (SNL) to aid in experiment planning. The calculation methods using the ORIGEN2 and ORIGEN-ARP computer codes and the input modeling of the planned PWR spent fuel from the H. B. Robinson and the Surry nuclear power plants are discussed. The safety hazards for the calculated nuclide inventories in the spent fuel samples are characterized by the potential airborne dose and by the portion of the nuclear facility hazard category 2 and 3 thresholds that the experiment samples would present. In addition, the gamma ray photon energy source for the nuclide inventories is tabulated to facilitate subsequent calculation of the direct and shielded dose rates expected from the samples. The relative hazards of the high burnup 72 gigawatt-day per metric ton of uranium (GWd/MTU) spent fuel from H. B. Robinson and the medium burnup 36 GWd/MTU spent fuel from Surry are compared against a parametric calculation of various fuel burnups to assess the potential for higher hazard PWR fuel samples.
Two-dimensional maps of the sheath electric fields formed around a metal-dielectric interface were measured in a radio frequency (rf) argon plasma using laser-induced fluorescence-dip spectroscopy. Experimentally determined Stark shifts of the argon Rydberg 13d[3/2]1 state were used to quantify the electric fields in the sheath as functions of the rf cycle, voltage, and pressure. Both the structure of the sheath fields and the discharge characteristics in the region above the electrode depend on the discharge conditions and the configuration of the surface. Dissimilar materials placed adjacent to each other result in electric fields with a component parallel to the electrode surface.
Rare earth doped yttrium oxide (yttria) and silicate, Y{sub 2}O{sub 3}:Eu and Y{sub 2}SiO{sub 5}:Tb, are the most promising phosphors for advanced devices such as flat panel field-emission-displays. However, their light yield for electron excitation has proven to be lower than that predicted by early models. New experimental data are needed to improve the theoretical understanding of the cathodoluminescence (CL) that will, in turn, lead to materials that are significantly brighter. Beside the existing CL and photo luminescence (PL) measurements, one can provide new information by studying ion-induced luminescence (IL). Ions penetrate substantially deeper than electrons and their light yield should therefore not depend on surface effects. Moreover, the energy density released by ions can be much higher than that of electrons and photons, which results in possible saturation effects, further testing the adequacy of models. We exposed the above yttrium compounds to three ion beams, H (3 MeV), C (20 MeV), Cu (50 MeV), which have substantially different electronic stopping powers. H was selected to provide an excitation close to CL, but without surface effects. The C and Cu allowed an evaluation of saturation effects because of their higher stopping powers. The IL experiments involved measuring the transient light intensity signal radiating from thin phosphor layers following their exposure to {approx}200 ns ion beam pulses. We present the transient yield curves for the two materials and discuss a general model for this behavior.
The plastic behavior of crystalline materials is mainly controlled by the nucleation and motion of lattice dislocations. We report in situ dynamic transmission electron microscope observations of nanocrystalline nickel films with an average grain size of about 10 nanometers, which show that grain boundary-mediated processes have become a prominent deformation mode. Additionally, trapped lattice dislocations are observed in individual grains following deformation. This change in the deformation mode arises from the grain size-dependent competition between the deformation controlled by nucleation and motion of dislocations and the deformation controlled by diffusion-assisted grain boundary processes.
In complex simulation systems where humans interact with computer-generated agents, information display and the interplay of virtual agents have become dominant media and modalities of interface design. This design strategy is reflected in augmented reality (AR), an environment where humans interact with computer-generated agents in real-time. AR systems can generate large amount of information, multiple solutions in less time, and perform far better in time-constrained problem solving. The capabilities of AR have been leveraged to augment cognition in human information processing. In this sort of augmented cognition (AC) work system, while technology has become the main source for information acquisition from the environment, the human sensory and memory capacities have failed to cope with the magnitude and scale of information they encounter. This situation generates opportunity for excessive cognitive workloads, a major factor in degraded human performance. From the human effectiveness point of view, research is needed to develop, model, and validate simulation tools that can measure the effectiveness of an AR technology used to support the amplification of human cognition. These tools will allow us to predict human performance for tasks executed under an AC tool construct. This paper presents an exploration of ergonomics issues relevant to AR and AC systems design. Additionally, proposed research to investigate those ergonomic issues is discussed.
By using a multipole-conformal mapping expansion for the wire currents we examine the accuracy of approximations for the transfer inductance of a one dimensional array of wires (wire grid). A simple uniform fit is constructed by introduction of the decay factor from bipolar coordinates into existing formulas for this inductance.
In theory, it should be possible to infer realistic genetic networks from time series microarray data. In practice, however, network discovery has proved problematic. The three major challenges are: (1) inferring the network; (2) estimating the stability of the inferred network; and (3) making the network visually accessible to the user. Here we describe a method, tested on publicly available time series microarray data, which addresses these concerns. The inference of genetic networks from genome-wide experimental data is an important biological problem which has received much attention. Approaches to this problem have typically included application of clustering algorithms [6]; the use of Boolean networks [12, 1, 10]; the use of Bayesian networks [8, 11]; and the use of continuous models [21, 14, 19]. Overviews of the problem and general approaches to network inference can be found in [4, 3]. Our approach to network inference is similar to earlier methods in that we use both clustering and Boolean network inference. However, we have attempted to extend the process to better serve the end-user, the biologist. In particular, we have incorporated a system to assess the reliability of our network, and we have developed tools which allow interactive visualization of the proposed network.
Khan, Feroz H.; Vannoni, Michael G.; Rajen, Gaurav
India and Pakistan have created sizeable ballistic missile forces and are continuing to develop and enlarge them. These forces can be both stabilizing (e.g., providing a survivable force for deterrence) and destabilizing (e.g., creating strategic asymmetries). Missile forces will be a factor in bilateral relations for the foreseeable future, so restraint is necessary to curtail their destabilizing effects. Such restraint, however, must develop within an atmosphere of low trust. This report presents a set of political and operational options, both unilateral and bilateral, that decreases tensions, helps rebuild the bilateral relationship, and prepares the ground for future steps in structural arms control. Significant steps, which build on precedents and do not require extensive cooperation, are possible despite strained relations. The approach is made up of three distinct phases: (1) tension reduction measures, (2) confidence building measures, and (3) arms control agreements. The goal of the first phase is to initiate unilateral steps that are substantive and decrease tensions, establish missiles as a security topic for bilateral discussion, and set precedents for limited bilateral cooperation. The second phase would build confidence by expanding current bilateral security agreements, formalizing bilateral understandings, and beginning discussion of monitoring procedures. The third phase could include bilateral agreements limiting some characteristics of national missile forces including the cooperative incorporation of monitoring and verification.