Experiments on the zebra accelerator at UNR/NTF
Abstract not provided.
Abstract not provided.
Hydrogen energy may provide the means to an environmentally friendly future. One of the problems related to its application for transportation is 'on-board' storage. Hydrogen storage in solids has long been recognized as one of the most practical approaches for this purpose. The H-capacity in interstitial hydrides of most metals and alloys is limited to below 2.5% by weight and this is unsatisfactory for on-board transportation applications. Magnesium hydride is an exception with hydrogen capacity of {approx}8.2 wt.%, however, its operating temperature, above 350 C, is too high for practical use. Sodium alanate (NaAlH{sub 4}) absorbs hydrogen up to 5.6 wt.% theoretically; however, its reaction kinetics and partial reversibility do not completely meet the new target for transportation application. Recently Chen et al. [1] reported that (Li{sub 3} N + 2H{sub 2} {leftrightarrow} LiNH{sub 2} + 2LiH) provides a storage material with a possible high capacity, up to 11.5 wt.%, although this material is still too stable to meet the operating pressure/temperature requirement. Here we report a new approach to destabilize lithium imide system by partial substitution of lithium by magnesium in the (LiNH{sub 2 + LiH {leftrightarrow} Li2NH + H2}) system with a minimal capacity loss. This Mg-substituted material can reversibly absorb 5.2 wt.% hydrogen at pressure of 30 bar at 200 C. This is a very promising material for on-board hydrogen storage applications. It is interesting to observe that the starting material (2LiNH{sub 2 + MgH2}) converts to (Mg(NH{sub 2}){sub 2} + 2LiH) after a desorption/re-absorption cycle.
This report documents state-of-the-art methods, tools, and data for the conduct of a fire Probabilistic Risk Assessment (PRA) for a commercial nuclear power plant (NPP) application. The methods have been developed under the Fire Risk Re-quantification Study. This study was conducted as a joint activity between EPRI and the U. S. NRC Office of Nuclear Regulatory Research (RES) under the terms of an EPRI/RES Memorandum of Understanding [RS.1] and an accompanying Fire Research Addendum [RS.2]. Industry participants supported demonstration analyses and provided peer review of this methodology. The documented methods are intended to support future applications of Fire PRA, including risk-informed regulatory applications. The documented method reflects state-of-the-art fire risk analysis approaches. The primary objective of the Fire Risk Study was to consolidate recent research and development activities into a single state-of-the-art fire PRA analysis methodology. Methodological issues raised in past fire risk analyses, including the Individual Plant Examination of External Events (IPEEE) fire analyses, have been addressed to the extent allowed by the current state-of-the-art and the overall project scope. Methodological debates were resolved through a consensus process between experts representing both EPRI and RES. The consensus process included a provision whereby each major party (EPRI and RES) could maintain differing technical positions if consensus could not be reached. No cases were encountered where this provision was invoked. While the primary objective of the project was to consolidate existing state-of-the-art methods, in many areas, the newly documented methods represent a significant advancement over previously documented methods. In several areas, this project has, in fact, developed new methods and approaches. Such advances typically relate to areas of past methodological debate.
In flight tests, certain finned bodies of revolution firing lateral jets experience slower spin rates than expected. The primary cause for the reduced spin rate is the interaction between the lateral jets and the freestream air flowing past the body. This interaction produces vortices that interact with the fins (Vortex-Fin Interaction (VFI)) altering the pressure distribution over the fins and creating torque that counteracts the desired spin (counter torque). The current task is to develop an automated procedure for analyzing the pressures measured at an array of points on the fin surfaces of a body tested in a production-scale wind tunnel to determine the VFI-induced roll torque and compare it to the roll torque experimentally measured with an aerodynamic balance. Basic pressure, force, and torque relationships were applied to finite elements defined by the pressure measurement locations and integrated across the fin surface. The integrated fin pressures will help assess the distinct contributions of the individual fins to the counter torque and aid in correlating the counter torque with the positions and strengths of the vortices. The methodology produced comparisons of the effects of VFI for varying flow conditions such as freestream Mach number and dynamic pressure. The results show that for some cases the calculated counter torque agreed with the measured counter torque; however, the results were less consistent with increased freestream Mach numbers and dynamic pressures.
The analytical model for the depth of correlation (measurement depth) of a microscopic particle image velocimetry (micro-PIV) experiment derived by Olsen and Adrian (Exp. Fluids, 29, pp. S166-S174, 2000) has been modified to be applicable to experiments using high numerical aperture optics. A series of measurements are presented that experimentally quantify the depth of correlation of micro-PIV velocity measurements which employ high numerical aperture and magnification optics. These measurements demonstrate that the modified analytical model is quite accurate in estimating the depth of correlation in micro-PIV measurements using this class of optics. Additionally, it was found that the Gaussian particle approximation made in this model does not significantly affect the model's performance. It is also demonstrated that this modified analytical model easily predicts the depth of correlation when viewing into a medium of a different index of refraction than the immersion medium.
Proposed for publication in Surface Science.
Abstract not provided.
Solid-state {sup 1}H NMR relaxometry studies were conducted on a hydroxy-terminated polybutadiene (HTPB) based polyurethane elastomer thermo-oxidatively aged at 80 C. The {sup 1}H T{sub 1}, T{sub 2}, and T{sub 1{rho}} relaxation times of samples thermally aged for various periods of time were determined as a function of NMR measurement temperature. The response of each measurement was calculated from a best-fit linear function of the relaxation time vs. aging time. It was found that the T{sub 2,H} and T{sub 1{rho},H} relaxation times exhibited the largest response to thermal degradation, whereas T{sub 1,H} showed minimal change. All of the NMR relaxation measurements on solid samples showed significantly less sensitivity to thermal aging than the T{sub 2,H} relaxation times of solvent-swollen samples.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The microstructure and mechanical properties of niobium-modified lead zirconate titanate (PNZT) 95/5 ceramics, where 95/5 refers to the ratio of lead zirconate to lead titanate, were evaluated as a function of lead (Pb) stoichiometry. Chemically-prepared PNZT 95/5 is produced at Sandia National Laboratories by the Ceramics and Glass Processing Department (14154) for use as voltage elements in ferroelectric neutron generator power supplies. PNZT 95/5 was prepared according to the nominal formulation of Pb{sub 0.991+x}(Zr{sub 0.955}Ti{sub 0.045}){sub 0.982}Nb{sub 0.018}O{sub 3+x}, where x (-0.0274 {approx}< x {approx}< 0.0297) refers to the mole fraction of Pb and O that deviated from the stoichiometric value. The Pb concentrations were determined from calcined powders; no adjustments were made to Pb compositions due to weight loss during sintering. The microstructure (second phases, fracture mode and grain size) varied appreciably with Pb stoichiometry, whereas the mechanical properties (hardness, fracture toughness, strength and Weibull parameters) exhibited modest variation. Specimens deficient in Pb, 2.74% (x = -0.0274) and 2.15% (x = -0.02150), had a high area fraction of a zirconia (ZrO{sub 2}) second phase on the order of 0.02. As the Pb content in solid solution increased the ZrO{sub 2} content decreased; no ZrO{sub 2} was observed for the specimen containing 2.97% excess Pb (x = 0.0297). Over the range of Pb stoichiometry most specimens fractured predominately transgranularly; however, 2.97% Pb excess PNZT 95/5 fractured predominately intergranularly. No systematic changes in hardness or Weibull modulus were observed as a function of Pb content. Fracture toughness decreased slightly from 1.8 MPa{center_dot}m{sup 1/2} for Pb deficient specimens to 1.6 MPa{center_dot}m{sup 1/2} for specimens with excess Pb. Although there are microstructural differences with changes in Pb content, the mechanical properties did not vary substantially. However, the average failure stress and fracture toughness for PNZT 95/5 containing 2.97% excess Pb decreased slightly. It is expected that additional increases in Pb content would result in further mechanical property degradation. The decrease in mechanical properties for the 2.97% Pb excess ceramics could be the result of a weaker PbO-rich grain boundary phase present in the material. If better mechanical properties are desired, it is recommended that PNZT 95/5 ceramics are processed by a method whereby any excess Pb is depleted from the final sintered ceramic so that near-stoichiometric values of Pb concentration are reached. Otherwise, a PbO-rich grain boundary phase may exist in the ceramic which could potentially be detrimental to the mechanical properties of PNZT 95/5 ceramics.
Abstract not provided.
This report represents the completion of a Laboratory-Directed Research and Development (LDRD) program to develop and fabricate geometric test structures for the measurement of transport properties in bulk GaN and AlGaN/GaN heterostructures. A large part of this study was spent examining fabrication issues related to the test structures used in these measurements, due to the fact that GaN processing is still in its infancy. One such issue had to do with surface passivation. Test samples without a surface passivation, often failed at electric fields below 50 kV/cm, due to surface breakdown. A silicon nitride passivation layer of approximately 200 nm was used to reduce the effects of surface states and premature surface breakdown. Another issue was finding quality contacts for the material, especially in the case of the AlGaN/GaN heterostructure samples. Poor contact performance in the heterostructures plagued the test structures with lower than expected velocities due to carrier injection from the contacts themselves. Using a titanium-rich ohmic contact reduced the contact resistance and stopped the carrier injection. The final test structures had an etch constriction with varying lengths and widths (8x2, 10x3, 12x3, 12x4, 15x5, and 16x4 {micro}m) and massive contacts. A pulsed voltage input and a four-point measurement in a 50 {Omega} environment was used to determine the current through and the voltage dropped across the constriction. From these measurements, the drift velocity as a function of the applied electric field was calculated and thus, the velocity-field characteristics in n-type bulk GaN and AlGaN/GaN test structures were determined. These measurements show an apparent saturation velocity near to 2.5x10{sup 7} cm/s at 180 kV/cm and 3.1x10{sup 7} cm/s, at a field of 140 kV/cm, for the bulk GaN and AlGaN heterostructure samples, respectively. These experimental drift velocities mark the highest velocities measured in these materials to date and confirm the predictions of previous theoretical models using ensemble Monte Carlo simulations.
Proposed for publication in Nature Materials.
The ability to precisely place nanomaterials at predetermined locations is necessary for realizing applications using these new materials. Using an organic template, we demonstrate directed growth of zinc oxide (ZnO) nanorods on silver films from aqueous solution. Spatial organization of ZnO nanorods in prescribed arbitrary patterns was achieved, with unprecedented control in selectivity, crystal orientation, and nucleation density. Surprisingly, we found that caboxylate endgroups of {omega}-alkanethiol molecules strongly inhibit ZnO nucleation. The mechanism for this observed selectivity is discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Chemistry of Materials.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The first viscous compressible three-dimensional BiGlobal linear instability analysis of leading-edge boundary layer flow has been performed. Results have been obtained by independent application of asymptotic analysis and numerical solution of the appropriate partial-differential eigenvalue problem. It has been shown that the classification of three-dimensional linear instabilities of the related incompressible flow [13] into symmetric and antisymmetric mode expansions in the chordwise coordinate persists for compressible, subsonic flow-regime at sufficiently large Reynolds numbers.
Abstract not provided.
Abstract not provided.
Abstract not provided.