Publications

Results 87126–87150 of 99,299

Search results

Jump to search filters

Initial condition strategies for multiple-time partial differential equations

Coffey, Todd S.

Many highly oscillatory circuits have a wide separation of time scales between the underlying oscillation and the behavior of interest. This is particularly true of communication circuits. Multiple-time Partial Differential Equation (MPDE) methods offer substantial speed-up for these circuits by introducing a periodic artificial time variable that represents the highly oscillatory behavior. This leaves just the slowly changing behavior of interest, which can be integrated with much larger steps. One problem of particular interest is the larger initial condition that must be specified for this periodic artificial time variable. One possible solution is to formulate an optimization problem in the hopes of increasing the step sizes taken in the slow time direction. This talk will discuss one possible unconstrained optimization problem for determining this initial condition. Numerical results and comparisons to several other initial condition strategies will be presented in addition to MPDE background research and implementation issues.

More Details

Final report of LDRD project : compact ultrabright multikilovolt x-ray sources for advanced materials studies, 3D nanoimaging, and attosecond x-ray technology

Loubriel, Guillermo M.

Experimental evidence and corresponding theoretical analyses have led to the conclusion that the system composed of Xe hollow atom states, that produce a characteristic Xe(L) spontaneous emission spectrum at 1 {at} 2.9 {angstrom} and arise from the excitation of Xe clusters with an intense pulse of 248 nm radiation propagating in a self-trapped plasma channel, closely represents the ideal situation sought for amplification in the multikilovolt region. The key innovation that is central to all aspects of the proposed work is the controlled compression of power to the level ({approx} 10{sup 20} W/cm{sup 3}) corresponding to the maximum achieved by thermonuclear events. Furthermore, since the x-ray power that is produced appears in a coherent form, an entirely new domain of physical interaction is encountered that involves states of matter that are both highly excited and highly ordered. Moreover, these findings lead to the concept of 'photonstaging', an idea which offers the possibility of advancing the power compression by an additional factor of {approx} 10{sup 9} to {approx} 10{sup 29} W/cm{sup 3}. In this completely unexplored regime, g-ray production ({h_bar}{omega}{sub {gamma}} {approx} 1 MeV) is expected to be a leading process. A new technology for the production of very highly penetrating radiation would then be available. The Xe(L) source at {h_bar}{omega}{sub x} {approx} 4.5 keV can be applied immediately to the experimental study of many aspects of the coupling of intense femtosecond x-ray pulses to materials. In a joint collaboration, the UIC group and Sandia plan to explore the following areas. These are specifically, (1) anomalous electromagnetic coupling to solid state materials, (2) 3D nanoimaging of solid matter and hydrated biological materials (e.g. interchromosomal linkers and actin filaments in muscle), and (3) EMP generation with attosecond x-rays.

More Details

Eye safe short range standoff aerosol cloud finder

Reichardt, Thomas A.; Bambha, Ray; Schroder, Kevin L.

Because many solid objects, both stationary and mobile, will be present in an indoor environment, the design of an indoor aerosol cloud finding lidar (light detection and ranging) instrument presents a number of challenges. The cloud finder must be able to discriminate between these solid objects and aerosol clouds as small as 1-meter in depth in order to probe suspect clouds. While a near IR ({approx}1.5-{micro}m) laser is desirable for eye-safety, aerosol scattering cross sections are significantly lower in the near-IR than at visible or W wavelengths. The receiver must deal with a large dynamic range since the backscatter from solid object will be orders of magnitude larger than for aerosol clouds. Fast electronics with significant noise contributions will be required to obtain the necessary temporal resolution. We have developed a laboratory instrument to detect aerosol clouds in the presence of solid objects. In parallel, we have developed a lidar performance model for performing trade studies. Careful attention was paid to component details so that results obtained in this study could be applied towards the development of a practical instrument. The amplitude and temporal shape of the signal return are analyzed for discrimination of aerosol clouds in an indoor environment. We have assessed the feasibility and performance of candidate approaches for a fieldable instrument. With the near-IR PMT and a 1.5-{micro}m laser source providing 20-{micro}J pulses, we estimate a bio-aerosol detection limit of 3000 particles/l.

More Details

Solution-based nanoengineering of materials

Liu, Jun; Criscenti, Louise; Spoerke, Erik D.; Mckenzie, Bonnie; Cygan, Randall T.; Voigt, James A.

Solution-based synthesis is a powerful approach for creating nano-structured materials. Although there have been significant recent successes in its application to fabricating nanomaterials, the general principles that control solution synthesis are not well understood. The purpose of this LDRD project was to develop the scientific principles required to design and build unique nanostructures in crystalline oxides and II/VI semiconductors using solution-based molecular self-assembly techniques. The ability to synthesize these materials in a range of different nano-architectures (from controlled morphology nanocrystals to surface templated 3-D structures) has provided the foundation for new opportunities in such areas as interactive interfaces for optics, electronics, and sensors. The homogeneous precipitation of ZnO in aqueous solution was used primarily as the model system for the project. We developed a low temperature, aqueous solution synthesis route for preparation of large arrays of oriented ZnO nanostructures. Through control of heterogeneous nucleation and growth, methods to predicatively alter the ZnO microstructures by tailoring the surface chemistry of the crystals were established. Molecular mechanics simulations, involving single point energy calculations and full geometry optimizations, were developed to assist in selecting appropriate chemical systems and understanding physical adsorption and ultimately growth mechanisms in the design of oxide nanoarrays. The versatility of peptide chemistry in controlling the formation of cadmium sulfide nanoparticles and zinc oxide/cadmium sulfide heterostructures was also demonstrated.

More Details

LDRD final report on continuous wave intersubband terahertz sources

Wanke, Michael C.; Foltynowicz, Robert J.; Young, Erik W.; Mangan, Michael A.; Fuller, Charles T.; Reno, John L.; Stephenson, Larry L.; Hudgens, James J.

There is a general lack of compact electromagnetic radiation sources between 1 and 10 terahertz (THz). This a challenging spectral region lying between optical devices at high frequencies and electronic devices at low frequencies. While technologically very underdeveloped the THz region has the promise to be of significant technological importance, yet demonstrating its relevance has proven difficult due to the immaturity of the area. While the last decade has seen much experimental work in ultra-short pulsed terahertz sources, many applications will require continuous wave (cw) sources, which are just beginning to demonstrate adequate performance for application use. In this project, we proposed examination of two potential THz sources based on intersubband semiconductor transitions, which were as yet unproven. In particular we wished to explore quantum cascade lasers based sources and electronic based harmonic generators. Shortly after the beginning of the project, we shifted our emphasis to the quantum cascade lasers due to two events; the publication of the first THz quantum cascade laser by another group thereby proving feasibility, and the temporary shut down of the UC Santa Barbara free-electron lasers which were to be used as the pump source for the harmonic generation. The development efforts focused on two separate cascade laser thrusts. The ultimate goal of the first thrust was for a quantum cascade laser to simultaneously emit two mid-infrared frequencies differing by a few THz and to use these to pump a non-linear optical material to generate THz radiation via parametric interactions in a specifically engineered intersubband transition. While the final goal was not realized by the end of the project, many of the completed steps leading to the goal will be described in the report. The second thrust was to develop direct THz QC lasers operating at terahertz frequencies. This is simpler than a mixing approach, and has now been demonstrated by a few groups with wavelengths spanning 65-150 microns. We developed and refined the MBE growth for THz for both internally and externally designed QC lasers. Processing related issues continued to plague many of our demonstration efforts and will also be addressed in this report.

More Details

Parametric studies of penetration events : a design and analysis of experiments approach

Marin, Esteban B.; Chiesa, Michael L.; Booker, Paul M.

A numerical screening study of the interaction between a penetrator and a geological target with a preformed hole has been carried out to identify the main parameters affecting the penetration event. The planning of the numerical experiment was based on the orthogonal array OA(18,7,3,2), which allows 18 simulation runs with 7 parameters at 3 levels each. The strength of 2 of the array allows also for two-factor interaction studies. The seven parameters chosen for this study are: penetrator offset, hole diameter, hole taper, vertical and horizontal velocity of the penetrator, angle of attack of the penetrator and target material. The analysis of the simulation results has been based on main effects plots and analysis of variance (ANOVA), and it has been performed using three metrics: the maximum values of the penetration depth, penetrator deceleration and plastic strain in the penetrator case. This screening study shows that target material has a major influence on penetration depth and penetrator deceleration, while penetrator offset has the strongest effect on the maximum plastic strain.

More Details

Radionuclide absorbers development program overview

Jow, H.N.

The proposed Yucca Mountain repository is anticipated to be the first facility for long-term disposal of commercial spent nuclear fuel and high-level radioactive waste in the United States. The facility, located in the southern Nevada desert, is currently in the planning stages with initial exploratory excavations completed. It is an underground facility mined into the tuffaceous volcanic rocks that sit above the local water table. The focus of the work described in this paper is the development of radionuclide absorbers or 'getter' materials for neptunium (Np), iodine (I), and technetium (Tc) for potential deployment in the repository. 'Getter' materials retard the migration of radionuclides through sorption, reduction, or other chemical and physical processes, thereby slowing or preventing the release and transport of radionuclides. An overview of the objectives and approaches utilized in this work with respect to materials selection and modeling of ion 'getters' is presented. The benefits of the 'getter' development program to the United States Department of Energy (US DOE) are outlined.

More Details

Investigation of the effects of intense pulsed particle beams on the durability of metal-to-plastic interfaces

Renk, Timothy J.

We have investigated the potential for intense particle beam surface modification to improve the mechanical properties of materials commonly used in the human body for contact surfaces in, for example, hip and knee implants. The materials studied include Ultra-High Molecular Weight Polyethylene (UHMWPE), Ti-6Al-4Al (titanium alloy), and Co-Cr-Mo alloy. Samples in flat form were exposed to both ion and electron beams (UHMWPE), and to ion beam treatment (metals). Post-analysis indicated a degradation in bulk properties of the UHMWPE, except in the case of the lightest ion fluence tested. A surface-alloyed Hf/Ti layer on the Ti-6Al-4V is found to improve surface wear durability, and have favorable biocompatibility. A promising nanolaminate ceramic coating is applied to the Co-Cr-Mo to improve surface hardness.

More Details

Discrete element simulation of dense granular flow in a modified Couette cell

Lechman, Jeremy B.; Grest, Gary S.

Large-scale three dimensional Discrete Element simulations of granular flow in a modified split-bottom Couette cell for packs of up to 180,000 mono-disperse spheres are presented and compared with experiments. We find that the velocity profiles collapse onto a universal curve not only at the surface but also in the bulk of the pack until slip between layers becomes significant. In agreement with experiment, we find similar relations between the cell geometry and parameters involved in rescaling the velocities at the surface and in the bulk. Likewise, a change in the shape of the shear zone is observed as predicted for tall packs once the center of the shear zone is correctly defined; although the transition does not appear to be first order. Finally, the effect of cohesion is considered as a means to test the theoretical predictions.

More Details

Development of models and online diagnostic monitors of the high-temperature corrosion of refractories in oxy/fuel glass furnaces : final project report

Allendorf, Mark

This report summarizes the results of a five-year effort to understand the mechanisms and develop models that predict the corrosion of refractories in oxygen-fuel glass-melting furnaces. Thermodynamic data for the Si-O-(Na or K) and Al-O-(Na or K) systems are reported, allowing equilibrium calculations to be performed to evaluate corrosion of silica- and alumina-based refractories under typical furnace operating conditions. A detailed analysis of processes contributing to corrosion is also presented. Using this analysis, a model of the corrosion process was developed and used to predict corrosion rates in an actual industrial glass furnace. The rate-limiting process is most likely the transport of NaOH(gas) through the mass-transport boundary layer from the furnace atmosphere to the crown surface. Corrosion rates predicted on this basis are in better agreement with observation than those produced by any other mechanism, although the absolute values are highly sensitive to the crown temperature and the NaOH(gas) concentration at equilibrium and at the edge of the boundary layer. Finally, the project explored the development of excimer laser induced fragmentation (ELIF) fluorescence spectroscopy for the detection of gas-phase alkali hydroxides (e.g., NaOH) that are predicted to be the key species causing accelerated corrosion in these furnaces. The development of ELIF and the construction of field-portable instrumentation for glass furnace applications are reported and the method is shown to be effective in industrial settings.

More Details

Knowledge Discovery and Data Mining (KDDM) survey report

Chapman, Leon D.; Homan, Rossitza; Bauer, Travis L.; Phillips, Laurence R.; Spires, Shannon V.; Jordan, Danyelle N.

The large number of government and industry activities supporting the Unit of Action (UA), with attendant documents, reports and briefings, can overwhelm decision-makers with an overabundance of information that hampers the ability to make quick decisions often resulting in a form of gridlock. In particular, the large and rapidly increasing amounts of data and data formats stored on UA Advanced Collaborative Environment (ACE) servers has led to the realization that it has become impractical and even impossible to perform manual analysis leading to timely decisions. UA Program Management (PM UA) has recognized the need to implement a Decision Support System (DSS) on UA ACE. The objective of this document is to research the commercial Knowledge Discovery and Data Mining (KDDM) market and publish the results in a survey. Furthermore, a ranking mechanism based on UA ACE-specific criteria has been developed and applied to a representative set of commercially available KDDM solutions. In addition, an overview of four R&D areas identified as critical to the implementation of DSS on ACE is provided. Finally, a comprehensive database containing detailed information on surveyed KDDM tools has been developed and is available upon customer request.

More Details
Results 87126–87150 of 99,299
Results 87126–87150 of 99,299